poppernet
PopperNet
Bases: nn.Module
Source code in autora/experimentalist/pooler/poppernet.py
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
|
forward(x)
This method defines the network layering and activation functions
Source code in autora/experimentalist/pooler/poppernet.py
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
|
class_to_onehot(y, n_classes=None)
Converts a class vector (integers) to binary class matrix.
E.g. for use with categorical_crossentropy.
Arguments
y: class vector to be converted into a matrix
(integers from 0 to num_classes).
n_classes: total number of classes.
Returns
A binary matrix representation of the input.
Source code in autora/experimentalist/pooler/poppernet.py
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
|
poppernet_pool(model, x_train, y_train, metadata, n=100, training_epochs=1000, optimization_epochs=1000, training_lr=0.001, optimization_lr=0.001, mse_scale=1, limit_offset=0, limit_repulsion=0, plot=False)
A pooler that generates samples for independent variables with the objective of maximizing the (approximated) loss of the model. The samples are generated by first training a neural network to approximate the loss of a model for all patterns in the training data. Once trained, the network is then inverted to generate samples that maximize the approximated loss of the model.
Note: If the pooler returns samples that are close to the boundaries of the variable space, then it is advisable to increase the limit_repulsion parameter (e.g., to 0.000001).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Scikit-learn model, could be either a classification or regression model |
required | |
x_train |
np.ndarray
|
data that the model was trained on |
required |
y_train |
np.ndarray
|
labels that the model was trained on |
required |
metadata |
VariableCollection
|
Meta-data about the dependent and independent variables |
required |
n |
int
|
number of samples to return |
100
|
training_epochs |
int
|
number of epochs to train the popper network for approximating the |
1000
|
optimization_epochs |
int
|
number of epochs to optimize the samples based on the trained |
1000
|
training_lr |
float
|
learning rate for training the popper network |
0.001
|
optimization_lr |
float
|
learning rate for optimizing the samples |
0.001
|
mse_scale |
float
|
scale factor for the MSE loss |
1
|
limit_offset |
float
|
a limited offset to prevent the samples from being too close to the value |
0
|
limit_repulsion |
float
|
a limited repulsion to prevent the samples from being too close to the |
0
|
plot |
bool
|
print out the prediction of the popper network as well as its training loss |
False
|
Source code in autora/experimentalist/pooler/poppernet.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
|