Skip to content

plot_utils

DebugWindow

A window with plots that are used for debugging.

Source code in autora/theorist/darts/plot_utils.py
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
class DebugWindow:
    """
    A window with plots that are used for debugging.
    """

    def __init__(
        self,
        num_epochs: int,
        numArchEdges: int = 1,
        numArchOps: int = 1,
        ArchOpsLabels: typing.Tuple = (),
        fitPlot3D: bool = False,
        show_arch_weights: bool = True,
    ):
        """
        Initializes the debug window.

        Arguments:
            num_epochs: number of architecture training epochs
            numArchEdges: number of architecture edges
            numArchOps: number of architecture operations
            ArchOpsLabels: list of architecture operation labels
            fitPlot3D: if True, the 3D plot of the fit is shown
            show_arch_weights: if True, the architecture weights are shown
        """

        # initialization
        matplotlib.use("TkAgg")  # need to add this for PyCharm environment

        plt.ion()

        # SETTINGS
        self.show_arch_weights = show_arch_weights
        self.fontSize = 10

        self.performancePlot_limit = (0, 1)
        self.modelFitPlot_limit = (0, 500)
        self.mismatchPlot_limit = (0, 1)
        self.architectureWeightsPlot_limit = (0.1, 0.2)

        self.numPatternsShown = 100

        # FIGURE
        self.fig = plt.figure()
        self.fig.set_size_inches(13, 7)

        if self.show_arch_weights is False:
            numArchEdges = 0

        # set up grid
        numRows = np.max((1 + np.ceil((numArchEdges + 1) / 4), 2))
        gs = GridSpec(numRows.astype(int), 4, figure=self.fig)

        self.fig.subplots_adjust(
            left=0.1, bottom=0.1, right=0.90, top=0.9, wspace=0.4, hspace=0.5
        )
        self.modelGraph = self.fig.add_subplot(gs[1, 0])
        self.performancePlot = self.fig.add_subplot(gs[0, 0])
        self.modelFitPlot = self.fig.add_subplot(gs[0, 1])
        if fitPlot3D:
            self.mismatchPlot = self.fig.add_subplot(gs[0, 2], projection="3d")
        else:
            self.mismatchPlot = self.fig.add_subplot(gs[0, 2])
        self.examplePatternsPlot = self.fig.add_subplot(gs[0, 3])

        self.architecturePlot = []

        for edge in range(numArchEdges):
            row = np.ceil((edge + 2) / 4).astype(int)
            col = (edge + 1) % 4
            self.architecturePlot.append(self.fig.add_subplot(gs[row, col]))

        self.colors = (
            "black",
            "red",
            "green",
            "blue",
            "purple",
            "orange",
            "brown",
            "pink",
            "grey",
            "olive",
            "cyan",
            "yellow",
            "skyblue",
            "coral",
            "magenta",
            "seagreen",
            "sandybrown",
        )

        # PERFORMANCE PLOT
        x = 1
        y = 1
        (self.train_error,) = self.performancePlot.plot(x, y, "r-")
        (self.valid_error,) = self.performancePlot.plot(x, y, "b", linestyle="dashed")

        # set labels
        self.performancePlot.set_xlabel("Epoch", fontsize=self.fontSize)
        self.performancePlot.set_ylabel("Cross-Entropy Loss", fontsize=self.fontSize)
        self.performancePlot.set_title("Performance", fontsize=self.fontSize)
        self.performancePlot.legend(
            (self.train_error, self.valid_error), ("training error", "validation error")
        )

        # adjust axes
        self.performancePlot.set_xlim(0, num_epochs)
        self.performancePlot.set_ylim(
            self.performancePlot_limit[0], self.performancePlot_limit[1]
        )

        # MODEL FIT PLOT
        x = 1
        y = 1
        (self.BIC,) = self.modelFitPlot.plot(x, y, color="black")
        (self.AIC,) = self.modelFitPlot.plot(x, y, color="grey")

        # set labels
        self.modelFitPlot.set_xlabel("Epoch", fontsize=self.fontSize)
        self.modelFitPlot.set_ylabel("Information Criterion", fontsize=self.fontSize)
        self.modelFitPlot.set_title("Model Fit", fontsize=self.fontSize)
        self.modelFitPlot.legend((self.BIC, self.AIC), ("BIC", "AIC"))

        # adjust axes
        self.modelFitPlot.set_xlim(0, num_epochs)
        self.modelFitPlot.set_ylim(
            self.modelFitPlot_limit[0], self.modelFitPlot_limit[1]
        )

        # RANGE PREDICTION FIT PLOT
        x = 1
        y = 1
        if fitPlot3D:
            x = np.arange(0, 1, 0.1)
            y = np.arange(0, 1, 0.1)
            X, Y = np.meshgrid(x, y)
            Z = X * np.exp(-X - Y)

            self.range_target = self.mismatchPlot.plot_surface(X, Y, Z)
            self.range_prediction = self.mismatchPlot.plot_surface(X, Y, Z)
            self.mismatchPlot.set_zlim(
                self.mismatchPlot_limit[0], self.mismatchPlot_limit[1]
            )

            # set labels
            self.mismatchPlot.set_xlabel("Stimulus 1", fontsize=self.fontSize)
            self.mismatchPlot.set_ylabel("Stimulus 2", fontsize=self.fontSize)
            self.mismatchPlot.set_zlabel("Outcome Value", fontsize=self.fontSize)

        else:
            (self.range_target,) = self.mismatchPlot.plot(x, y, color="black")
            (self.range_prediction,) = self.mismatchPlot.plot(x, y, "--", color="red")

            # set labels
            self.mismatchPlot.set_xlabel("Stimulus Value", fontsize=self.fontSize)
            self.mismatchPlot.set_ylabel("Outcome Value", fontsize=self.fontSize)
            self.mismatchPlot.legend(
                (self.range_target, self.range_prediction), ("target", "prediction")
            )

        self.mismatchPlot.set_title("Target vs. Prediction", fontsize=self.fontSize)

        # adjust axes
        self.mismatchPlot.set_xlim(0, 1)
        self.mismatchPlot.set_ylim(0, 1)

        # ARCHITECTURE WEIGHT PLOT
        if self.show_arch_weights:

            self.architectureWeights = []
            for idx, architecturePlot in enumerate(self.architecturePlot):
                plotWeights = []
                x = 1
                y = 1
                for op in range(numArchOps):
                    (plotWeight,) = architecturePlot.plot(x, y, color=self.colors[op])
                    plotWeights.append(plotWeight)

                # set legend
                if idx == 0:
                    architecturePlot.legend(
                        plotWeights, ArchOpsLabels, prop={"size": 6}
                    )

                # add labels
                architecturePlot.set_ylabel("Weight", fontsize=self.fontSize)
                architecturePlot.set_title(
                    "(" + str(idx) + ") Edge Weight", fontsize=self.fontSize
                )
                if idx == len(self.architecturePlot) - 1:
                    architecturePlot.set_xlabel("Epoch", fontsize=self.fontSize)

                # adjust axes
                architecturePlot.set_xlim(0, num_epochs)
                architecturePlot.set_ylim(
                    self.architectureWeightsPlot_limit[0],
                    self.architectureWeightsPlot_limit[1],
                )

                self.architectureWeights.append(plotWeights)

        # draw
        plt.draw()

    def update(
        self,
        train_error: np.array = None,
        valid_error: np.array = None,
        weights: np.array = None,
        BIC: np.array = None,
        AIC: np.array = None,
        model_graph: str = None,
        range_input1: np.array = None,
        range_input2: np.array = None,
        range_target: np.array = None,
        range_prediction: np.array = None,
        target: np.array = None,
        prediction: np.array = None,
    ):
        """
        Update the debug plot with new data.

        Arguments:
            train_error: training error
            valid_error: validation error
            weights: weights of the model
            BIC: Bayesian information criterion of the model
            AIC: Akaike information criterion of the model
            model_graph: the graph of the model
            range_input1: the range of the first input
            range_input2: the range of the second input
            range_target: the range of the target
            range_prediction: the range of the prediction
            target: the target
            prediction: the prediction
        """

        # update training error
        if train_error is not None:
            self.train_error.set_xdata(
                np.linspace(1, len(train_error), len(train_error))
            )
            self.train_error.set_ydata(train_error)

        # update validation error
        if valid_error is not None:
            self.valid_error.set_xdata(
                np.linspace(1, len(valid_error), len(valid_error))
            )
            self.valid_error.set_ydata(valid_error)

        # update BIC
        if BIC is not None:
            self.BIC.set_xdata(np.linspace(1, len(BIC), len(BIC)))
            self.BIC.set_ydata(BIC)

        # update AIC
        if AIC is not None:
            self.AIC.set_xdata(np.linspace(1, len(AIC), len(AIC)))
            self.AIC.set_ydata(AIC)

        # update target vs. prediction plot
        if (
            range_input1 is not None
            and range_target is not None
            and range_prediction is not None
            and range_input2 is None
        ):
            self.range_target.set_xdata(range_input1)
            self.range_target.set_ydata(range_target)
            self.range_prediction.set_xdata(range_input1)
            self.range_prediction.set_ydata(range_prediction)
        elif (
            range_input1 is not None
            and range_target is not None
            and range_prediction is not None
            and range_input2 is not None
        ):

            # update plot
            self.mismatchPlot.cla()
            self.range_target = self.mismatchPlot.plot_surface(
                range_input1, range_input2, range_target, color=(0, 0, 0, 0.5)
            )
            self.range_prediction = self.mismatchPlot.plot_surface(
                range_input1, range_input2, range_prediction, color=(1, 0, 0, 0.5)
            )

            # set labels
            self.mismatchPlot.set_xlabel("Stimulus 1", fontsize=self.fontSize)
            self.mismatchPlot.set_ylabel("Stimulus 2", fontsize=self.fontSize)
            self.mismatchPlot.set_zlabel("Outcome Value", fontsize=self.fontSize)
            self.mismatchPlot.set_title("Target vs. Prediction", fontsize=self.fontSize)

        # update example pattern plot
        if target is not None and prediction is not None:

            # select limited number of patterns
            self.numPatternsShown = np.min((self.numPatternsShown, target.shape[0]))
            target = target[0 : self.numPatternsShown, :]
            prediction = prediction[0 : self.numPatternsShown, :]

            im = np.concatenate((target, prediction), axis=1)
            self.examplePatternsPlot.cla()
            self.examplePatternsPlot.imshow(im, interpolation="nearest", aspect="auto")
            x = np.ones(target.shape[0]) * (target.shape[1] - 0.5)
            y = np.linspace(1, target.shape[0], target.shape[0])
            self.examplePatternsPlot.plot(x, y, color="red")

            # set labels
            self.examplePatternsPlot.set_xlabel("Output", fontsize=self.fontSize)
            self.examplePatternsPlot.set_ylabel("Pattern", fontsize=self.fontSize)
            self.examplePatternsPlot.set_title(
                "Target vs. Prediction", fontsize=self.fontSize
            )

        if self.show_arch_weights:
            # update weights
            if weights is not None:
                for plotIdx, architectureWeights in enumerate(self.architectureWeights):
                    for lineIdx, plotWeight in enumerate(architectureWeights):
                        plotWeight.set_xdata(
                            np.linspace(1, weights.shape[0], weights.shape[0])
                        )
                        plotWeight.set_ydata(weights[:, plotIdx, lineIdx])

        # draw current graph
        if model_graph is not None:
            im = imageio.imread(model_graph)
            self.modelGraph.cla()
            self.modelGraph.imshow(im)
            self.modelGraph.axis("off")

        # re-draw plot
        plt.draw()
        plt.pause(0.02)

__init__(num_epochs, numArchEdges=1, numArchOps=1, ArchOpsLabels=(), fitPlot3D=False, show_arch_weights=True)

Initializes the debug window.

Parameters:

Name Type Description Default
num_epochs int

number of architecture training epochs

required
numArchEdges int

number of architecture edges

1
numArchOps int

number of architecture operations

1
ArchOpsLabels typing.Tuple

list of architecture operation labels

()
fitPlot3D bool

if True, the 3D plot of the fit is shown

False
show_arch_weights bool

if True, the architecture weights are shown

True
Source code in autora/theorist/darts/plot_utils.py
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
def __init__(
    self,
    num_epochs: int,
    numArchEdges: int = 1,
    numArchOps: int = 1,
    ArchOpsLabels: typing.Tuple = (),
    fitPlot3D: bool = False,
    show_arch_weights: bool = True,
):
    """
    Initializes the debug window.

    Arguments:
        num_epochs: number of architecture training epochs
        numArchEdges: number of architecture edges
        numArchOps: number of architecture operations
        ArchOpsLabels: list of architecture operation labels
        fitPlot3D: if True, the 3D plot of the fit is shown
        show_arch_weights: if True, the architecture weights are shown
    """

    # initialization
    matplotlib.use("TkAgg")  # need to add this for PyCharm environment

    plt.ion()

    # SETTINGS
    self.show_arch_weights = show_arch_weights
    self.fontSize = 10

    self.performancePlot_limit = (0, 1)
    self.modelFitPlot_limit = (0, 500)
    self.mismatchPlot_limit = (0, 1)
    self.architectureWeightsPlot_limit = (0.1, 0.2)

    self.numPatternsShown = 100

    # FIGURE
    self.fig = plt.figure()
    self.fig.set_size_inches(13, 7)

    if self.show_arch_weights is False:
        numArchEdges = 0

    # set up grid
    numRows = np.max((1 + np.ceil((numArchEdges + 1) / 4), 2))
    gs = GridSpec(numRows.astype(int), 4, figure=self.fig)

    self.fig.subplots_adjust(
        left=0.1, bottom=0.1, right=0.90, top=0.9, wspace=0.4, hspace=0.5
    )
    self.modelGraph = self.fig.add_subplot(gs[1, 0])
    self.performancePlot = self.fig.add_subplot(gs[0, 0])
    self.modelFitPlot = self.fig.add_subplot(gs[0, 1])
    if fitPlot3D:
        self.mismatchPlot = self.fig.add_subplot(gs[0, 2], projection="3d")
    else:
        self.mismatchPlot = self.fig.add_subplot(gs[0, 2])
    self.examplePatternsPlot = self.fig.add_subplot(gs[0, 3])

    self.architecturePlot = []

    for edge in range(numArchEdges):
        row = np.ceil((edge + 2) / 4).astype(int)
        col = (edge + 1) % 4
        self.architecturePlot.append(self.fig.add_subplot(gs[row, col]))

    self.colors = (
        "black",
        "red",
        "green",
        "blue",
        "purple",
        "orange",
        "brown",
        "pink",
        "grey",
        "olive",
        "cyan",
        "yellow",
        "skyblue",
        "coral",
        "magenta",
        "seagreen",
        "sandybrown",
    )

    # PERFORMANCE PLOT
    x = 1
    y = 1
    (self.train_error,) = self.performancePlot.plot(x, y, "r-")
    (self.valid_error,) = self.performancePlot.plot(x, y, "b", linestyle="dashed")

    # set labels
    self.performancePlot.set_xlabel("Epoch", fontsize=self.fontSize)
    self.performancePlot.set_ylabel("Cross-Entropy Loss", fontsize=self.fontSize)
    self.performancePlot.set_title("Performance", fontsize=self.fontSize)
    self.performancePlot.legend(
        (self.train_error, self.valid_error), ("training error", "validation error")
    )

    # adjust axes
    self.performancePlot.set_xlim(0, num_epochs)
    self.performancePlot.set_ylim(
        self.performancePlot_limit[0], self.performancePlot_limit[1]
    )

    # MODEL FIT PLOT
    x = 1
    y = 1
    (self.BIC,) = self.modelFitPlot.plot(x, y, color="black")
    (self.AIC,) = self.modelFitPlot.plot(x, y, color="grey")

    # set labels
    self.modelFitPlot.set_xlabel("Epoch", fontsize=self.fontSize)
    self.modelFitPlot.set_ylabel("Information Criterion", fontsize=self.fontSize)
    self.modelFitPlot.set_title("Model Fit", fontsize=self.fontSize)
    self.modelFitPlot.legend((self.BIC, self.AIC), ("BIC", "AIC"))

    # adjust axes
    self.modelFitPlot.set_xlim(0, num_epochs)
    self.modelFitPlot.set_ylim(
        self.modelFitPlot_limit[0], self.modelFitPlot_limit[1]
    )

    # RANGE PREDICTION FIT PLOT
    x = 1
    y = 1
    if fitPlot3D:
        x = np.arange(0, 1, 0.1)
        y = np.arange(0, 1, 0.1)
        X, Y = np.meshgrid(x, y)
        Z = X * np.exp(-X - Y)

        self.range_target = self.mismatchPlot.plot_surface(X, Y, Z)
        self.range_prediction = self.mismatchPlot.plot_surface(X, Y, Z)
        self.mismatchPlot.set_zlim(
            self.mismatchPlot_limit[0], self.mismatchPlot_limit[1]
        )

        # set labels
        self.mismatchPlot.set_xlabel("Stimulus 1", fontsize=self.fontSize)
        self.mismatchPlot.set_ylabel("Stimulus 2", fontsize=self.fontSize)
        self.mismatchPlot.set_zlabel("Outcome Value", fontsize=self.fontSize)

    else:
        (self.range_target,) = self.mismatchPlot.plot(x, y, color="black")
        (self.range_prediction,) = self.mismatchPlot.plot(x, y, "--", color="red")

        # set labels
        self.mismatchPlot.set_xlabel("Stimulus Value", fontsize=self.fontSize)
        self.mismatchPlot.set_ylabel("Outcome Value", fontsize=self.fontSize)
        self.mismatchPlot.legend(
            (self.range_target, self.range_prediction), ("target", "prediction")
        )

    self.mismatchPlot.set_title("Target vs. Prediction", fontsize=self.fontSize)

    # adjust axes
    self.mismatchPlot.set_xlim(0, 1)
    self.mismatchPlot.set_ylim(0, 1)

    # ARCHITECTURE WEIGHT PLOT
    if self.show_arch_weights:

        self.architectureWeights = []
        for idx, architecturePlot in enumerate(self.architecturePlot):
            plotWeights = []
            x = 1
            y = 1
            for op in range(numArchOps):
                (plotWeight,) = architecturePlot.plot(x, y, color=self.colors[op])
                plotWeights.append(plotWeight)

            # set legend
            if idx == 0:
                architecturePlot.legend(
                    plotWeights, ArchOpsLabels, prop={"size": 6}
                )

            # add labels
            architecturePlot.set_ylabel("Weight", fontsize=self.fontSize)
            architecturePlot.set_title(
                "(" + str(idx) + ") Edge Weight", fontsize=self.fontSize
            )
            if idx == len(self.architecturePlot) - 1:
                architecturePlot.set_xlabel("Epoch", fontsize=self.fontSize)

            # adjust axes
            architecturePlot.set_xlim(0, num_epochs)
            architecturePlot.set_ylim(
                self.architectureWeightsPlot_limit[0],
                self.architectureWeightsPlot_limit[1],
            )

            self.architectureWeights.append(plotWeights)

    # draw
    plt.draw()

update(train_error=None, valid_error=None, weights=None, BIC=None, AIC=None, model_graph=None, range_input1=None, range_input2=None, range_target=None, range_prediction=None, target=None, prediction=None)

Update the debug plot with new data.

Parameters:

Name Type Description Default
train_error np.array

training error

None
valid_error np.array

validation error

None
weights np.array

weights of the model

None
BIC np.array

Bayesian information criterion of the model

None
AIC np.array

Akaike information criterion of the model

None
model_graph str

the graph of the model

None
range_input1 np.array

the range of the first input

None
range_input2 np.array

the range of the second input

None
range_target np.array

the range of the target

None
range_prediction np.array

the range of the prediction

None
target np.array

the target

None
prediction np.array

the prediction

None
Source code in autora/theorist/darts/plot_utils.py
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
def update(
    self,
    train_error: np.array = None,
    valid_error: np.array = None,
    weights: np.array = None,
    BIC: np.array = None,
    AIC: np.array = None,
    model_graph: str = None,
    range_input1: np.array = None,
    range_input2: np.array = None,
    range_target: np.array = None,
    range_prediction: np.array = None,
    target: np.array = None,
    prediction: np.array = None,
):
    """
    Update the debug plot with new data.

    Arguments:
        train_error: training error
        valid_error: validation error
        weights: weights of the model
        BIC: Bayesian information criterion of the model
        AIC: Akaike information criterion of the model
        model_graph: the graph of the model
        range_input1: the range of the first input
        range_input2: the range of the second input
        range_target: the range of the target
        range_prediction: the range of the prediction
        target: the target
        prediction: the prediction
    """

    # update training error
    if train_error is not None:
        self.train_error.set_xdata(
            np.linspace(1, len(train_error), len(train_error))
        )
        self.train_error.set_ydata(train_error)

    # update validation error
    if valid_error is not None:
        self.valid_error.set_xdata(
            np.linspace(1, len(valid_error), len(valid_error))
        )
        self.valid_error.set_ydata(valid_error)

    # update BIC
    if BIC is not None:
        self.BIC.set_xdata(np.linspace(1, len(BIC), len(BIC)))
        self.BIC.set_ydata(BIC)

    # update AIC
    if AIC is not None:
        self.AIC.set_xdata(np.linspace(1, len(AIC), len(AIC)))
        self.AIC.set_ydata(AIC)

    # update target vs. prediction plot
    if (
        range_input1 is not None
        and range_target is not None
        and range_prediction is not None
        and range_input2 is None
    ):
        self.range_target.set_xdata(range_input1)
        self.range_target.set_ydata(range_target)
        self.range_prediction.set_xdata(range_input1)
        self.range_prediction.set_ydata(range_prediction)
    elif (
        range_input1 is not None
        and range_target is not None
        and range_prediction is not None
        and range_input2 is not None
    ):

        # update plot
        self.mismatchPlot.cla()
        self.range_target = self.mismatchPlot.plot_surface(
            range_input1, range_input2, range_target, color=(0, 0, 0, 0.5)
        )
        self.range_prediction = self.mismatchPlot.plot_surface(
            range_input1, range_input2, range_prediction, color=(1, 0, 0, 0.5)
        )

        # set labels
        self.mismatchPlot.set_xlabel("Stimulus 1", fontsize=self.fontSize)
        self.mismatchPlot.set_ylabel("Stimulus 2", fontsize=self.fontSize)
        self.mismatchPlot.set_zlabel("Outcome Value", fontsize=self.fontSize)
        self.mismatchPlot.set_title("Target vs. Prediction", fontsize=self.fontSize)

    # update example pattern plot
    if target is not None and prediction is not None:

        # select limited number of patterns
        self.numPatternsShown = np.min((self.numPatternsShown, target.shape[0]))
        target = target[0 : self.numPatternsShown, :]
        prediction = prediction[0 : self.numPatternsShown, :]

        im = np.concatenate((target, prediction), axis=1)
        self.examplePatternsPlot.cla()
        self.examplePatternsPlot.imshow(im, interpolation="nearest", aspect="auto")
        x = np.ones(target.shape[0]) * (target.shape[1] - 0.5)
        y = np.linspace(1, target.shape[0], target.shape[0])
        self.examplePatternsPlot.plot(x, y, color="red")

        # set labels
        self.examplePatternsPlot.set_xlabel("Output", fontsize=self.fontSize)
        self.examplePatternsPlot.set_ylabel("Pattern", fontsize=self.fontSize)
        self.examplePatternsPlot.set_title(
            "Target vs. Prediction", fontsize=self.fontSize
        )

    if self.show_arch_weights:
        # update weights
        if weights is not None:
            for plotIdx, architectureWeights in enumerate(self.architectureWeights):
                for lineIdx, plotWeight in enumerate(architectureWeights):
                    plotWeight.set_xdata(
                        np.linspace(1, weights.shape[0], weights.shape[0])
                    )
                    plotWeight.set_ydata(weights[:, plotIdx, lineIdx])

    # draw current graph
    if model_graph is not None:
        im = imageio.imread(model_graph)
        self.modelGraph.cla()
        self.modelGraph.imshow(im)
        self.modelGraph.axis("off")

    # re-draw plot
    plt.draw()
    plt.pause(0.02)

generate_darts_summary_figures(figure_names, titles, filters, title_suffix, study_name, y_name, y_label, y_sem_name, x1_name, x1_label, x2_name, x2_label, x_limit, y_limit, best_model_name, figure_size, y_reference=None, y_reference_label='', arch_samp_filter=None)

Generates a summary figure for a given DARTS study. The figure can be composed of different summary plots.

Parameters:

Name Type Description Default
figure_names typing.List[str]

list of strings with the names of the figures to be generated

required
titles typing.List[str]

list of strings with the titles of the figures to be generated

required
filters typing.List[str]

list of strings with the theorist filters to be used to select the models to be used in the figures

required
title_suffix str

string with the suffix to be added to the titles of the figures

required
study_name str

string with the name of the study (used to identify the study folder)

required
y_name str

string with the name of the y-axis variable

required
y_label str

string with the label of the y-axis variable

required
y_sem_name str

string with the name of the y-axis coding the standard error of the mean

required
x1_name str

string with the name of the (first) x-axis variable

required
x1_label str

string with the label of the (first) x-axis variable

required
x2_name str

string with the name of the second x-axis variable

required
x2_label str

string with the label of the second x-axis variable

required
x_limit typing.List[float]

list with the limits of the x-axis

required
y_limit typing.List[float]

list with the limits of the y-axis

required
best_model_name str

string with the name of the best model to be highlighted in the figure

required
figure_size typing.Tuple[int, int]

list with the size of the figure

required
y_reference typing.List[float]

list with the values of the reference line

None
y_reference_label str

string with the label of the reference line

''
arch_samp_filter str

string with the name of the filter to be used to select the samples of the architecture

None
Source code in autora/theorist/darts/plot_utils.py
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
def generate_darts_summary_figures(
    figure_names: typing.List[str],
    titles: typing.List[str],
    filters: typing.List[str],
    title_suffix: str,
    study_name: str,
    y_name: str,
    y_label: str,
    y_sem_name: str,
    x1_name: str,
    x1_label: str,
    x2_name: str,
    x2_label: str,
    x_limit: typing.List[float],
    y_limit: typing.List[float],
    best_model_name: str,
    figure_size: typing.Tuple[int, int],
    y_reference: typing.List[float] = None,
    y_reference_label: str = "",
    arch_samp_filter: str = None,
):
    """
    Generates a summary figure for a given DARTS study.
    The figure can be composed of different summary plots.

    Arguments:
        figure_names: list of strings with the names of the figures to be generated
        titles: list of strings with the titles of the figures to be generated
        filters: list of strings with the theorist filters to be used to select the models to be
            used in the figures
        title_suffix: string with the suffix to be added to the titles of the figures
        study_name: string with the name of the study (used to identify the study folder)
        y_name: string with the name of the y-axis variable
        y_label: string with the label of the y-axis variable
        y_sem_name: string with the name of the y-axis coding the standard error of the mean
        x1_name: string with the name of the (first) x-axis variable
        x1_label: string with the label of the (first) x-axis variable
        x2_name: string with the name of the second x-axis variable
        x2_label: string with the label of the second x-axis variable
        x_limit: list with the limits of the x-axis
        y_limit: list with the limits of the y-axis
        best_model_name: string with the name of the best model to be highlighted in the figure
        figure_size: list with the size of the figure
        y_reference: list with the values of the reference line
        y_reference_label: string with the label of the reference line
        arch_samp_filter: string with the name of the filter to be used to select the
            samples of the architecture

    """

    for idx, (figure_name, title, theorist_filter) in enumerate(
        zip(figure_names, titles, filters)
    ):

        print("##########################: " + figure_name)
        title = title + title_suffix
        if idx > 0:  # after legend
            show_legend = False
            figure_dimensions = figure_size
        else:
            show_legend = True
            figure_dimensions = (6, 6)
        if idx > 1:  # after original darts
            y_label = " "

        plot_darts_summary(
            study_name=study_name,
            title=title,
            y_name=y_name,
            y_label=y_label,
            y_sem_name=y_sem_name,
            x1_name=x1_name,
            x1_label=x1_label,
            x2_name=x2_name,
            x2_label=x2_label,
            metric="mean_min",
            x_limit=x_limit,
            y_limit=y_limit,
            best_model_name=best_model_name,
            theorist_filter=theorist_filter,
            arch_samp_filter=arch_samp_filter,
            figure_name=figure_name,
            figure_dimensions=figure_dimensions,
            legend_loc=aer_config.legend_loc,
            legend_font_size=aer_config.legend_font_size,
            axis_font_size=aer_config.axis_font_size,
            title_font_size=aer_config.title_font_size,
            show_legend=show_legend,
            y_reference=y_reference,
            y_reference_label=y_reference_label,
            save=True,
        )

load_model(study_name, model_weights_name, arch_weights_name, object_of_study)

Load the model.

Parameters:

Name Type Description Default
study_name str

name of the study (used to identify the relevant study folder)

required
model_weights_name str

name of the model weights file (that contains the trained parameters)

required
arch_weights_name str

name of the architecture weights file

required
object_of_study Object_Of_Study

name of the object of study

required

Returns:

Name Type Description
model torch.nn.Module

DARTS model

Source code in autora/theorist/darts/plot_utils.py
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
def load_model(
    study_name: str,
    model_weights_name: str,
    arch_weights_name: str,
    object_of_study: Object_Of_Study,
) -> torch.nn.Module:
    """
    Load the model.

    Arguments:
        study_name: name of the study (used to identify the relevant study folder)
        model_weights_name: name of the model weights file (that contains the trained parameters)
        arch_weights_name: name of the architecture weights file
        object_of_study: name of the object of study

    Returns:
        model: DARTS model
    """

    import os

    import torch

    import autora.theorist.darts.utils as utils
    from autora.theorist.darts.model_search import Network

    num_output = object_of_study.__get_output_dim__()
    num_input = object_of_study.__get_input_dim__()
    k = int(float(arch_weights_name.split("_k_", 1)[1].split("_s_", 1)[0]))

    results_weights_path = (
        aer_config.studies_folder
        + study_name
        + "/"
        + aer_config.models_folder
        + aer_config.models_results_weights_folder
    )

    model_path = os.path.join(results_weights_path, model_weights_name + ".pt")
    arch_path = os.path.join(results_weights_path, arch_weights_name + ".pt")
    criterion = utils.sigmid_mse
    model = Network(num_output, criterion, steps=k, n_input_states=num_input)
    utils.load(model, model_path)
    alphas_normal = torch.load(arch_path)
    model.fix_architecture(True, new_weights=alphas_normal)

    return model

plot_darts_summary(study_name, y_name, x1_name, x2_name='', y_label='', x1_label='', x2_label='', y_sem_name=None, metric='min', y_reference=None, y_reference_label='', figure_dimensions=None, title='', legend_loc=0, legend_font_size=8, axis_font_size=10, title_font_size=10, show_legend=True, y_limit=None, x_limit=None, theorist_filter=None, arch_samp_filter=None, best_model_name=None, save=False, figure_name='figure')

Generates a single summary plot for a given DARTS study.

Parameters:

Name Type Description Default
study_name str

string with the name of the study (used to identify the study folder)

required
y_name str

string with the name of the y-axis variable

required
x1_name str

string with the name of the (first) x-axis variable

required
x2_name str

string with the name of the second x-axis variable

''
y_label str

string with the label of the y-axis variable

''
x1_label str

string with the label of the (first) x-axis variable

''
x2_label str

string with the label of the second x-axis variable

''
y_sem_name str

string with the name of the y-axis coding the standard error of the mean

None
metric str

string with the metric to be used to select the best model

'min'
y_reference typing.List[float]

list with the values of the reference line

None
y_reference_label str

string with the label of the reference line

''
figure_dimensions typing.Tuple[int, int]

list with the size of the figure

None
title str

string with the title of the figure

''
legend_loc int

integer with the location of the legend

0
legend_font_size int

integer with the font size of the legend

8
axis_font_size int

integer with the font size of the axis

10
title_font_size int

integer with the font size of the title

10
show_legend bool

boolean with the flag to show the legend

True
y_limit typing.List[float]

list with the limits of the y-axis

None
x_limit typing.List[float]

list with the limits of the x-axis

None
theorist_filter str

string with the name of the filter to be used to select the theorist

None
arch_samp_filter str

string with the name of the filter to be used to select the architecture

None
best_model_name str

string with the name of the best model to be highlighted in the figure

None
save bool

boolean with the flag to save the figure

False
figure_name str

string with the name of the figure

'figure'
Source code in autora/theorist/darts/plot_utils.py
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
def plot_darts_summary(
    study_name: str,
    y_name: str,
    x1_name: str,
    x2_name: str = "",
    y_label: str = "",
    x1_label: str = "",
    x2_label: str = "",
    y_sem_name: str = None,
    metric: str = "min",
    y_reference: typing.List[float] = None,
    y_reference_label: str = "",
    figure_dimensions: typing.Tuple[int, int] = None,
    title: str = "",
    legend_loc: int = 0,
    legend_font_size: int = 8,
    axis_font_size: int = 10,
    title_font_size: int = 10,
    show_legend: bool = True,
    y_limit: typing.List[float] = None,
    x_limit: typing.List[float] = None,
    theorist_filter: str = None,
    arch_samp_filter: str = None,
    best_model_name: str = None,
    save: bool = False,
    figure_name: str = "figure",
):
    """
    Generates a single summary plot for a given DARTS study.

    Arguments:
        study_name: string with the name of the study (used to identify the study folder)
        y_name: string with the name of the y-axis variable
        x1_name: string with the name of the (first) x-axis variable
        x2_name: string with the name of the second x-axis variable
        y_label: string with the label of the y-axis variable
        x1_label: string with the label of the (first) x-axis variable
        x2_label: string with the label of the second x-axis variable
        y_sem_name: string with the name of the y-axis coding the standard error of the mean
        metric: string with the metric to be used to select the best model
        y_reference: list with the values of the reference line
        y_reference_label: string with the label of the reference line
        figure_dimensions: list with the size of the figure
        title: string with the title of the figure
        legend_loc: integer with the location of the legend
        legend_font_size: integer with the font size of the legend
        axis_font_size: integer with the font size of the axis
        title_font_size: integer with the font size of the title
        show_legend: boolean with the flag to show the legend
        y_limit: list with the limits of the y-axis
        x_limit: list with the limits of the x-axis
        theorist_filter: string with the name of the filter to be used to select the theorist
        arch_samp_filter: string with the name of the filter to be used to select the architecture
        best_model_name: string with the name of the best model to be highlighted in the figure
        save: boolean with the flag to save the figure
        figure_name: string with the name of the figure
    """

    palette = "PuBu"

    if figure_dimensions is None:
        figure_dimensions = (4, 3)

    if y_label == "":
        y_label = y_name

    if x1_label == "":
        x1_label = x1_name

    if x2_label == "":
        x2_label = x2_name

    if y_reference_label == "":
        y_reference_label = "Data Generating Model"

    # determine directory for study results and figures
    results_path = (
        aer_config.studies_folder
        + study_name
        + "/"
        + aer_config.models_folder
        + aer_config.models_results_folder
    )

    figures_path = (
        aer_config.studies_folder
        + study_name
        + "/"
        + aer_config.models_folder
        + aer_config.models_results_figures_folder
    )

    # read in all csv files
    files = list()
    for file in os.listdir(results_path):
        if file.endswith(".csv"):
            if "model_" not in file:
                continue

            if theorist_filter is not None:
                if theorist_filter not in file:
                    continue
            files.append(os.path.join(results_path, file))

    print("Found " + str(len(files)) + " files.")

    # generate a plot dictionary
    plot_dict: typing.Dict[typing.Optional[str], typing.List] = dict()
    plot_dict[darts_config.csv_arch_file_name] = list()
    plot_dict[y_name] = list()
    plot_dict[x1_name] = list()
    if x2_name != "":
        plot_dict[x2_name] = list()
    if y_sem_name is not None:
        plot_dict[y_sem_name] = list()

    # load csv files into a common dictionary
    for file in files:
        data = pandas.read_csv(file, header=0)

        valid_data = list()

        # filter for arch samp
        if arch_samp_filter is not None:
            for idx, arch_file_name in enumerate(data[darts_config.csv_arch_file_name]):
                arch_samp = int(
                    float(arch_file_name.split("_sample", 1)[1].split("_", 1)[0])
                )
                if arch_samp == arch_samp_filter:
                    valid_data.append(idx)
        else:
            for idx in range(len(data[darts_config.csv_arch_file_name])):
                valid_data.append(idx)

        plot_dict[darts_config.csv_arch_file_name].extend(
            data[darts_config.csv_arch_file_name][valid_data]
        )
        if y_name in data.keys():
            plot_dict[y_name].extend(data[y_name][valid_data])
        else:
            raise Exception(
                'Could not find key "' + y_name + '" in the data file: ' + str(file)
            )
        if x1_name in data.keys():
            plot_dict[x1_name].extend(data[x1_name][valid_data])
        else:
            raise Exception(
                'Could not find key "' + x1_name + '" in the data file: ' + str(file)
            )
        if x2_name != "":
            if x2_name in data.keys():
                plot_dict[x2_name].extend(data[x2_name][valid_data])
            else:
                raise Exception(
                    'Could not find key "'
                    + x2_name
                    + '" in the data file: '
                    + str(file)
                )
        if y_sem_name is not None:
            # extract seed number from model file name

            if y_sem_name in data.keys():
                plot_dict[y_sem_name].extend(data[y_sem_name])
            elif y_sem_name == "seed":
                y_sem_list = list()
                for file_name in data[darts_config.csv_arch_file_name][valid_data]:
                    y_sem_list.append(
                        int(float(file_name.split("_s_", 1)[1].split("_sample", 1)[0]))
                    )
                plot_dict[y_sem_name].extend(y_sem_list)

            else:

                raise Exception(
                    'Could not find key "'
                    + y_sem_name
                    + '" in the data file: '
                    + str(file)
                )

    model_name_list = plot_dict[darts_config.csv_arch_file_name]
    x1_data = np.asarray(plot_dict[x1_name])
    y_data = np.asarray(plot_dict[y_name])
    if x2_name == "":  # determine for each value of x1 the corresponding y
        x1_data = np.asarray(plot_dict[x1_name])
        x1_unique = np.sort(np.unique(x1_data))

        y_plot = np.empty(x1_unique.shape)
        y_plot[:] = np.nan
        y_sem_plot = np.empty(x1_unique.shape)
        y_sem_plot[:] = np.nan
        y2_plot = np.empty(x1_unique.shape)
        y2_plot[:] = np.nan
        x1_plot = np.empty(x1_unique.shape)
        x1_plot[:] = np.nan
        for idx_unique, x1_unique_val in enumerate(x1_unique):
            y_match = list()
            model_name_match = list()
            for idx_data, x_data_val in enumerate(x1_data):
                if x1_unique_val == x_data_val:
                    y_match.append(y_data[idx_data])
                    model_name_match.append(model_name_list[idx_data])
            x1_plot[idx_unique] = x1_unique_val

            if metric == "min":
                y_plot[idx_unique] = np.min(y_match)
                idx_target = np.argmin(y_match)
                legend_label_spec = " (min)"
            elif metric == "max":
                y_plot[idx_unique] = np.max(y_match)
                idx_target = np.argmax(y_match)
                legend_label_spec = " (max)"
            elif metric == "mean":
                y_plot[idx_unique] = np.mean(y_match)
                idx_target = 0
                legend_label_spec = " (avg)"
            elif metric == "mean_min":
                y_plot[idx_unique] = np.mean(y_match)
                y2_plot[idx_unique] = np.min(y_match)
                idx_target = np.argmin(y_match)
                legend_label_spec = " (avg)"
                legend_label2_spec = " (min)"
            elif metric == "mean_max":
                y_plot[idx_unique] = np.mean(y_match)
                y2_plot[idx_unique] = np.max(y_match)
                idx_target = np.argmax(y_match)
                legend_label_spec = " (avg)"
                legend_label2_spec = " (max)"
            else:
                raise Exception(
                    'Argument "metric" may either be "min", "max", "mean", "mean_min" or "min_max".'
                )

            # compute standard error along given dimension
            if y_sem_name is not None:
                y_sem_data = np.asarray(plot_dict[y_sem_name])
                y_sem_unique = np.sort(np.unique(y_sem_data))
                y_sem = np.empty(y_sem_unique.shape)
                # first average y over all other variables
                for idx_y_sem_unique, y_sem_unique_val in enumerate(y_sem_unique):
                    y_sem_match = list()
                    for idx_y_sem, (
                        y_sem_data_val,
                        x1_data_val,
                        y_data_val,
                    ) in enumerate(zip(y_sem_data, x1_data, y_data)):
                        if (
                            y_sem_unique_val == y_sem_data_val
                            and x1_unique_val == x1_data_val
                        ):
                            y_sem_match.append(y_data_val)
                    y_sem[idx_y_sem_unique] = np.mean(y_sem_match)
                # now compute sem
                y_sem_plot[idx_unique] = np.nanstd(y_sem) / np.sqrt(len(y_sem))

            print(
                x1_label
                + " = "
                + str(x1_unique_val)
                + " ("
                + str(y_plot[idx_unique])
                + "): "
                + model_name_match[idx_target]
            )

    else:  # determine for each combination of x1 and x2 (unique rows) the lowest y
        x2_data = np.asarray(plot_dict[x2_name])
        x2_unique = np.sort(np.unique(x2_data))

        y_plot = list()
        y_sem_plot = list()
        y2_plot = list()
        x1_plot = list()
        x2_plot = list()
        for idx_x2_unique, x2_unique_val in enumerate(x2_unique):

            # collect all x1 and y values matching the current x2 value
            model_name_x2_match = list()
            y_x2_match = list()
            x1_x2_match = list()
            for idx_x2_data, x2_data_val in enumerate(x2_data):
                if x2_unique_val == x2_data_val:
                    model_name_x2_match.append(model_name_list[idx_x2_data])
                    y_x2_match.append(y_data[idx_x2_data])
                    x1_x2_match.append(x1_data[idx_x2_data])

            # now determine unique x1 values for current x2 value
            x1_unique = np.sort(np.unique(x1_x2_match))
            x1_x2_plot = np.empty(x1_unique.shape)
            x1_x2_plot[:] = np.nan
            y_x2_plot = np.empty(x1_unique.shape)
            y_x2_plot[:] = np.nan
            y_sem_x2_plot = np.empty(x1_unique.shape)
            y_sem_x2_plot[:] = np.nan
            y2_x2_plot = np.empty(x1_unique.shape)
            y2_x2_plot[:] = np.nan
            for idx_x1_unique, x1_unique_val in enumerate(x1_unique):
                y_x2_x1_match = list()
                model_name_x2_x1_match = list()
                for idx_x1_data, x1_data_val in enumerate(x1_x2_match):
                    if x1_unique_val == x1_data_val:
                        model_name_x2_x1_match.append(model_name_x2_match[idx_x1_data])
                        y_x2_x1_match.append(y_x2_match[idx_x1_data])
                x1_x2_plot[idx_x1_unique] = x1_unique_val

                if metric == "min":
                    y_x2_plot[idx_x1_unique] = np.min(y_x2_x1_match)
                    idx_target = np.argmin(y_x2_x1_match)
                    legend_label_spec = " (min)"
                elif metric == "max":
                    y_x2_plot[idx_x1_unique] = np.max(y_x2_x1_match)
                    idx_target = np.argmax(y_x2_x1_match)
                    legend_label_spec = " (max)"
                elif metric == "mean":
                    y_x2_plot[idx_x1_unique] = np.mean(y_x2_x1_match)
                    idx_target = 0
                    legend_label_spec = " (avg)"
                elif metric == "mean_min":
                    y_x2_plot[idx_x1_unique] = np.mean(y_x2_x1_match)
                    y2_x2_plot[idx_x1_unique] = np.min(y_x2_x1_match)
                    idx_target = np.argmin(y_x2_x1_match)
                    legend_label_spec = " (avg)"
                    legend_label2_spec = " (min)"
                elif metric == "mean_max":
                    y_x2_plot[idx_x1_unique] = np.mean(y_x2_x1_match)
                    y2_x2_plot[idx_x1_unique] = np.max(y_x2_x1_match)
                    idx_target = np.argmax(y_x2_x1_match)
                    legend_label_spec = " (avg)"
                    legend_label2_spec = " (max)"
                else:
                    raise Exception(
                        'Argument "metric" may either be "min", "max", "mean", '
                        '"mean_min" or "min_max".'
                    )

                # compute standard error along given dimension
                if y_sem_name is not None:
                    y_sem_data = np.asarray(plot_dict[y_sem_name])
                    y_sem_unique = np.sort(np.unique(y_sem_data))
                    y_sem = np.empty(y_sem_unique.shape)
                    # first average y over all other variables
                    for idx_y_sem_unique, y_sem_unique_val in enumerate(y_sem_unique):
                        y_sem_match = list()
                        for idx_y_sem, (
                            y_sem_data_val,
                            x1_data_val,
                            x2_data_val,
                            y_data_val,
                        ) in enumerate(zip(y_sem_data, x1_data, x2_data, y_data)):
                            if (
                                y_sem_unique_val == y_sem_data_val
                                and x1_unique_val == x1_data_val
                                and x2_unique_val == x2_data_val
                            ):
                                y_sem_match.append(y_data_val)
                        y_sem[idx_y_sem_unique] = np.nanmean(y_sem_match)
                    # now compute sem
                    y_sem_x2_plot[idx_x1_unique] = np.nanstd(y_sem) / np.sqrt(
                        len(y_sem)
                    )

                if metric == "mean_min" or metric == "mean_max":
                    best_val_str = str(y2_x2_plot[idx_x1_unique])
                else:
                    best_val_str = str(y_x2_plot[idx_x1_unique])

                print(
                    x1_label
                    + " = "
                    + str(x1_unique_val)
                    + ", "
                    + x2_label
                    + " = "
                    + str(x2_unique_val)
                    + " ("
                    + best_val_str
                    + "): "
                    + model_name_x2_x1_match[idx_target]
                )

            y_plot.append(y_x2_plot)
            y2_plot.append(y2_x2_plot)
            y_sem_plot.append(y_sem_x2_plot)
            x1_plot.append(x1_x2_plot)
            x2_plot.append(x2_unique_val)
    # plot
    # plt.axhline

    # determine best model coordinates
    best_model_x1 = None
    best_model_x2 = None
    best_model_y = None
    if best_model_name is not None:
        theorist = best_model_name.split("weights_", 1)[1].split("_v_", 1)[0]
        if theorist_filter is not None:
            if theorist_filter == theorist:
                determine_best_model = True
            else:
                determine_best_model = False
        else:
            determine_best_model = True

        if determine_best_model:
            idx = plot_dict[darts_config.csv_arch_file_name].index(best_model_name)
            best_model_x1 = plot_dict[x1_name][idx]
            best_model_x2 = plot_dict[x2_name][idx]
            best_model_y = plot_dict[y_name][idx]

    fig, ax = pyplot.subplots(figsize=figure_dimensions)

    if x2_name == "":

        colors = sns.color_palette(palette, 10)
        color = colors[-1]
        full_label = "Reconstructed Model" + legend_label_spec
        sns.lineplot(
            x=x1_plot,
            y=y_plot,
            marker="o",
            linewidth=2,
            ax=ax,
            label=full_label,
            color=color,
        )

        # draw error bars
        if y_sem_name is not None:
            ax.errorbar(x=x1_plot, y=y_plot, yerr=y_sem_plot, color=color)

        # draw second y value
        if metric == "mean_min" or metric == "mean_max":
            full_label = "Reconstructed Model" + legend_label2_spec
            ax.plot(x1_plot, y2_plot, "*", linewidth=2, label=full_label, color=color)

            if show_legend:
                handles, _ = ax.get_legend_handles_labels()
                ax.legend(handles=handles, loc=legend_loc)
                plt.setp(ax.get_legend().get_texts(), fontsize=legend_font_size)

        # draw selected model
        if best_model_x1 is not None and best_model_y is not None:
            ax.plot(
                best_model_x1,
                best_model_y,
                "o",
                fillstyle="none",
                color="black",
                markersize=10,
            )

        ax.set_xlabel(x1_label, fontsize=axis_font_size)
        ax.set_ylabel(y_label, fontsize=axis_font_size)
        ax.set_title(title, fontsize=title_font_size)

        if y_limit is not None:
            ax.set_ylim(y_limit)

        if x_limit is not None:
            ax.set_xlim(x_limit)

        # generate legend
        # ax.scatter(x1_plot, y_plot, marker='.', c='r')
        # g = sns.relplot(data=data_plot, x=x1_label, y=y_label, ax=ax)
        # g._legend.remove()
        if y_reference is not None:
            ax.axhline(
                y_reference, c="black", linestyle="dashed", label=y_reference_label
            )

            if show_legend:
                # generate legend
                handles, _ = ax.get_legend_handles_labels()
                ax.legend(handles=handles, loc=legend_loc)
                plt.setp(ax.get_legend().get_texts(), fontsize=legend_font_size)
    else:

        colors = sns.color_palette(palette, len(x2_plot))

        for idx, x2 in enumerate(x2_plot):

            x1_plot_line = x1_plot[idx]
            y_plot_line = y_plot[idx]
            label = x2_label + "$ = " + str(x2) + "$" + legend_label_spec
            color = colors[idx]

            sns.lineplot(
                x=x1_plot_line,
                y=y_plot_line,
                marker="o",
                linewidth=2,
                ax=ax,
                label=label,
                color=color,
                alpha=1,
            )

            # draw error bars
            if y_sem_name is not None:
                y_sem_plot_line = y_sem_plot[idx]
                ax.errorbar(
                    x=x1_plot_line,
                    y=y_plot_line,
                    yerr=y_sem_plot_line,
                    color=color,
                    alpha=1,
                )

        # # draw second y value on top
        # for idx, x2 in enumerate(x2_plot):
        #     x1_plot_line = x1_plot[idx]
        #     color = colors[idx]
        #
        #     if metric == 'mean_min' or metric == 'mean_max':
        #         y2_plot_line = y2_plot[idx]
        #         label = x2_label + '$ = ' + str(x2) + "$" + legend_label2_spec
        #         ax.plot(x1_plot_line, y2_plot_line, '*', linewidth=2, label=label, color=color)

        # draw selected model
        if best_model_x1 is not None and best_model_y is not None:
            ax.plot(
                best_model_x1,
                best_model_y,
                "o",
                fillstyle="none",
                color="black",
                markersize=10,
            )

            for idx, x2 in enumerate(x2_plot):
                if best_model_x2 == x2:
                    color = colors[idx]
            ax.plot(
                best_model_x1,
                best_model_y,
                "*",
                linewidth=2,
                label="Best Model",
                color=color,
            )

        if y_reference is not None:
            ax.axhline(
                y_reference, c="black", linestyle="dashed", label=y_reference_label
            )

        handles, _ = ax.get_legend_handles_labels()
        leg = ax.legend(
            handles=handles, loc=legend_loc, bbox_to_anchor=(1.05, 1)
        )  # , title='Legend'
        plt.setp(ax.get_legend().get_texts(), fontsize=legend_font_size)

        if not show_legend:
            leg.remove()

        if y_limit is not None:
            ax.set_ylim(y_limit)

        if x_limit is not None:
            ax.set_xlim(x_limit)

    sns.despine(trim=True)
    ax.set_ylabel(y_label, fontsize=axis_font_size)
    ax.set_xlabel(x1_label, fontsize=axis_font_size)
    ax.set_title(title, fontsize=title_font_size)
    plt.show()

    # save plot
    if save:
        if not os.path.exists(figures_path):
            os.mkdir(figures_path)
        fig.savefig(os.path.join(figures_path, figure_name))

plot_model_graph(study_name, arch_weights_name, model_weights_name, object_of_study, figure_name='graph')

Plot the graph of the DARTS model.

Parameters:

Name Type Description Default
study_name str

name of the study (used to identify the relevant study folder)

required
arch_weights_name str

name of the architecture weights file

required
model_weights_name str

name of the model weights file (that contains the trained parameters)

required
object_of_study Object_Of_Study

name of the object of study

required
figure_name str

name of the figure

'graph'
Source code in autora/theorist/darts/plot_utils.py
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
def plot_model_graph(
    study_name: str,
    arch_weights_name: str,
    model_weights_name: str,
    object_of_study: Object_Of_Study,
    figure_name: str = "graph",
):
    """
    Plot the graph of the DARTS model.

    Arguments:
        study_name: name of the study (used to identify the relevant study folder)
        arch_weights_name: name of the architecture weights file
        model_weights_name: name of the model weights file (that contains the trained parameters)
        object_of_study: name of the object of study
        figure_name: name of the figure
    """

    import os

    import autora.theorist.darts.utils as utils
    import autora.theorist.darts.visualize as viz

    figures_path = (
        aer_config.studies_folder
        + study_name
        + "/"
        + aer_config.models_folder
        + aer_config.models_results_figures_folder
    )

    model = load_model(
        study_name, model_weights_name, arch_weights_name, object_of_study
    )

    (n_params_total, n_params_base, param_list) = model.countParameters(
        print_parameters=True
    )
    genotype = model.genotype()
    filepath = os.path.join(figures_path, figure_name)
    viz.plot(
        genotype.normal,
        filepath,
        file_format="png",
        view_file=True,
        full_label=True,
        param_list=param_list,
        input_labels=object_of_study.__get_input_labels__(),
        out_dim=object_of_study.__get_output_dim__(),
        out_fnc=utils.get_output_str(object_of_study.__get_output_type__()),
    )