Metrics
normalized_tree_distance(e_a, e_b)
Normalized edit distance between two trees according to
Li, Y., & Chenguang, Z. (2011). A metric normalization of tree edit distance.
Frontiers of Computer Science in China, 5, 119-125.
Source code in src/equation_tree/metrics.py
11 12 13 14 15 16 17 18 19 20 |
|
prediction_distance(e_a, e_b, X)
Mean squared difference between the prediction of two equations on X
Examples:
>>> is_operator = lambda x : x in ['+', '*', '**', '-']
>>> is_variable = lambda x : x in ['x', 'y']
>>> expr_1 = sympify('x + y')
>>> expr_2 = sympify('x')
>>> et_1 = EquationTree.from_sympy(
... expr_1,
... operator_test=is_operator,
... variable_test=is_variable,
... )
>>> et_1.sympy_expr
x_1 + x_2
>>> et_2 = EquationTree.from_sympy(
... expr_2,
... operator_test=is_operator,
... variable_test=is_variable,
... )
>>> et_2.sympy_expr
x_1
>>> prediction_distance(et_1, et_2, {'x_1': [1], 'x_2': [1]})
1.0
>>> prediction_distance(et_1, et_2, {'x_1': [1, 2, 3], 'x_2': [0, 0, 0]})
0.0
>>> prediction_distance(et_1, et_2, {'x_1': [1, 2], 'x_2': [1, 2]})
2.5
Source code in src/equation_tree/metrics.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
|
symbolic_solution_diff(e_a, e_b)
Symbolic solution with difference constant based on
La Cava, W. et al (2021).
Contemporary symbolic regression methods and their relative performance.
Examples:
>>> is_operator = lambda x : x in ['+', '', '*', '-']
>>> is_variable = lambda x : x in ['x', 'y']
>>> is_constant = lambda x: is_numeric(x)
>>> expr_1 = sympify('x + .1')
>>> expr_2 = sympify('x')
>>> et_1 = EquationTree.from_sympy(
... expr_1,
... operator_test=is_operator,
... variable_test=is_variable,
... constant_test=is_constant
... )
>>> et_1.sympy_expr
x_1 + 0.1
>>> et_2 = EquationTree.from_sympy(
... expr_2,
... operator_test=is_operator,
... variable_test=is_variable,
... )
>>> et_2.sympy_expr
x_1
>>> symbolic_solution_diff(et_1, et_2)
0.1
Source code in src/equation_tree/metrics.py
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
|
symbolic_solution_quot(e_a, e_b)
Symbolic solution with quotient constant based on
La Cava, W. et al (2021).
Contemporary symbolic regression methods and their relative performance.
Examples:
>>> is_operator = lambda x : x in ['+', '', '', '-']
>>> is_variable = lambda x : x in ['x', 'y']
>>> is_constant = lambda x: is_numeric(x)
>>> expr_1 = sympify('x * .1')
>>> expr_2 = sympify('x')
>>> et_1 = EquationTree.from_sympy(
... expr_1,
... operator_test=is_operator,
... variable_test=is_variable,
... constant_test=is_constant
... )
>>> et_1.sympy_expr
0.1x_1
>>> et_2 = EquationTree.from_sympy(
... expr_2,
... operator_test=is_operator,
... variable_test=is_variable,
... )
>>> et_2.sympy_expr
x_1
>>> symbolic_solution_quot(et_1, et_2)
0.1
Source code in src/equation_tree/metrics.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
|