autora.experimentalist.random
random_pool = pool
module-attribute
Alias for pool
random_sample = sample
module-attribute
Alias for sample
pool(variables, num_samples=5, random_state=None, replace=True)
Create a sequence of conditions randomly sampled from independent variables.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
variables |
VariableCollection
|
the description of all the variables in the AER experiment. |
required |
num_samples |
int
|
the number of conditions to produce |
5
|
random_state |
Optional[int]
|
the seed value for the random number generator |
None
|
replace |
bool
|
if True, allow repeated values |
True
|
Returns: the generated conditions as a dataframe
Examples:
>>> from autora.state import State
>>> from autora.variable import VariableCollection, Variable
>>> from dataclasses import dataclass, field
>>> import pandas as pd
>>> import numpy as np
With one independent variable "x", and some allowed_values we get some of those values back when running the experimentalist:
>>> pool(
... VariableCollection(
... independent_variables=[Variable(name="x", allowed_values=range(10))
... ]), random_state=1)
x
0 4
1 5
2 7
3 9
4 0
... with one independent variable "x", and a value_range, we get a sample of the range back when running the experimentalist:
>>> pool(
... VariableCollection(independent_variables=[
... Variable(name="x", value_range=(-5, 5))
... ]), random_state=1)
x
0 0.118216
1 4.504637
2 -3.558404
3 4.486494
4 -1.881685
The allowed_values or value_range must be specified:
>>> pool(VariableCollection(independent_variables=[Variable(name="x")]))
Traceback (most recent call last):
...
ValueError: allowed_values or [value_range and type==REAL] needs to be set...
With two independent variables, we get independent samples on both axes:
>>> pool(VariableCollection(independent_variables=[
... Variable(name="x1", allowed_values=range(1, 5)),
... Variable(name="x2", allowed_values=range(1, 500)),
... ]), num_samples=10, replace=True, random_state=1)
x1 x2
0 2 434
1 3 212
2 4 137
3 4 414
4 1 129
5 1 205
6 4 322
7 4 275
8 1 43
9 2 14
If any of the variables have unspecified allowed_values, we get an error:
>>> pool(
... VariableCollection(independent_variables=[
... Variable(name="x1", allowed_values=[1, 2]),
... Variable(name="x2"),
... ]))
Traceback (most recent call last):
...
ValueError: allowed_values or [value_range and type==REAL] needs to be set...
We can specify arrays of allowed values:
>>> pool(
... VariableCollection(independent_variables=[
... Variable(name="x", allowed_values=np.linspace(-10, 10, 101)),
... Variable(name="y", allowed_values=[3, 4]),
... Variable(name="z", allowed_values=np.linspace(20, 30, 11)),
... ]), random_state=1)
x y z
0 -0.6 3 29.0
1 0.2 4 24.0
2 5.2 4 23.0
3 9.0 3 29.0
4 -9.4 3 22.0
Source code in autora/experimentalist/random.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
|
sample(conditions, num_samples=1, random_state=None, replace=False)
Take a random sample from some input conditions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
conditions |
Union[DataFrame, ndarray, recarray]
|
the conditions to sample from |
required |
num_samples |
int
|
the number of conditions to produce |
1
|
random_state |
Optional[int]
|
the seed value for the random number generator |
None
|
replace |
bool
|
if True, allow repeated values |
False
|
Returns: a Result object with a field conditions
containing a DataFrame of the sampled
conditions
Examples:
From a pd.DataFrame:
>>> import pandas as pd
>>> sample(
... pd.DataFrame({"x": range(100, 200)}), num_samples=5, random_state=180)
x
0 167
1 171
2 164
3 163
4 196
From a list (returns a DataFrame):
>>> sample(range(1000), num_samples=5, random_state=180)
0
0 270
1 908
2 109
3 331
4 978
Source code in autora/experimentalist/random.py
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
|