13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208 | def prospect_theory(
name="Prospect Theory",
choice_temperature=0.1,
value_alpha=0.88,
value_beta=0.88,
value_lambda=2.25,
probability_alpha=0.61,
probability_beta=0.69,
resolution=10,
minimum_value=-1,
maximum_value=1,
):
"""
Parameters from
D. Kahneman, A. Tversky, Prospect theory: An analysis of decision under risk.
Econometrica 47, 263–292 (1979). doi:10.2307/1914185
Power value function according to:
- A. Tversky, D. Kahneman, Advances in prospect theory: Cumulative representation of
uncertainty. J. Risk Uncertain. 5, 297–323 (1992). doi:10.1007/BF00122574
- I. Gilboa, Expected utility with purely subjective non-additive probabilities.
J. Math. Econ. 16, 65–88 (1987). doi:10.1016/0304-4068(87)90022-X
- D. Schmeidler, Subjective probability and expected utility without additivity.
Econometrica 57, 571 (1989). doi:10.2307/1911053
Probability function according to:
A. Tversky, D. Kahneman, Advances in prospect theory: Cumulative representation of
uncertainty. J. Risk Uncertain. 5, 297–323 (1992). doi:10.1007/BF00122574
Examples:
>>> s = prospect_theory()
>>> s.run(np.array([[.9,.1,.1,.9]]), random_state=42)
V_A P_A V_B P_B choose_A
0 0.9 0.1 0.1 0.9 0.709777
"""
params = dict(
choice_temperature=choice_temperature,
value_alpha=value_alpha,
value_beta=value_beta,
value_lambda=value_lambda,
probability_alpha=probability_alpha,
probability_beta=probability_beta,
resolution=resolution,
minimum_value=minimum_value,
maximum_value=maximum_value,
name=name,
)
variables = get_variables(
minimum_value=minimum_value, maximum_value=maximum_value, resolution=resolution
)
def run(
conditions: Union[pd.DataFrame, np.ndarray, np.recarray],
added_noise=0.01,
random_state: Optional[int] = None,
):
rng = np.random.default_rng(random_state)
X = np.array(conditions)
Y = np.zeros((X.shape[0], 1))
for idx, x in enumerate(X):
# power value function according to:
# A. Tversky, D. Kahneman, Advances in prospect theory: Cumulative representation of
# uncertainty. J. Risk Uncertain. 5, 297–323 (1992). doi:10.1007/BF00122574
# I. Gilboa, Expected utility with purely subjective non-additive probabilities.
# J. Math. Econ. 16, 65–88 (1987). doi:10.1016/0304-4068(87)90022-X
# D. Schmeidler, Subjective probability and expected utility without additivity.
# Econometrica 57, 571 (1989). doi:10.2307/1911053
# compute value of option A
if x[0] > 0:
value_A = x[0] ** value_alpha
else:
value_A = -value_lambda * (-x[0]) ** (value_beta)
# compute value of option B
if x[2] > 0:
value_B = x[2] ** value_alpha
else:
value_B = -value_lambda * (-x[2]) ** (value_beta)
# probability function according to:
# A. Tversky, D. Kahneman, Advances in prospect theory: Cumulative representation of
# uncertainty. J. Risk Uncertain. 5, 297–323 (1992). doi:10.1007/BF00122574
# compute probability of option A
if x[0] >= 0:
coefficient = probability_alpha
else:
coefficient = probability_beta
probability_a = x[1] ** coefficient / (
x[1] ** coefficient + (1 - x[1]) ** coefficient
) ** (1 / coefficient)
# compute probability of option B
if x[2] >= 0:
coefficient = probability_alpha
else:
coefficient = probability_beta
probability_b = x[3] ** coefficient / (
x[3] ** coefficient + (1 - x[3]) ** coefficient
) ** (1 / coefficient)
expected_value_A = value_A * probability_a + rng.normal(0, added_noise)
expected_value_B = value_B * probability_b + rng.normal(0, added_noise)
# compute probability of choosing option A
p_choose_A = np.exp(expected_value_A / choice_temperature) / (
np.exp(expected_value_A / choice_temperature)
+ np.exp(expected_value_B / choice_temperature)
)
Y[idx] = p_choose_A
experiment_data = pd.DataFrame(conditions)
experiment_data.columns = [v.name for v in variables.independent_variables]
experiment_data[variables.dependent_variables[0].name] = Y
return experiment_data
ground_truth = partial(run, added_noise=0.0)
def domain():
v_a = variables.independent_variables[0].allowed_values
p_a = variables.independent_variables[1].allowed_values
v_b = variables.independent_variables[2].allowed_values
p_b = variables.independent_variables[3].allowed_values
X = np.array(np.meshgrid(v_a, p_a, v_b, p_b)).T.reshape(-1, 4)
return X
def plotter(model=None):
import matplotlib.colors as mcolors
import matplotlib.pyplot as plt
v_a_list = [-0.5, 0.5, 1]
p_a = np.linspace(0, 1, 100)
v_b = 0.5
p_b = 0.5
for idx, v_a in enumerate(v_a_list):
X = np.zeros((len(p_a), 4))
X[:, 0] = v_a
X[:, 1] = p_a
X[:, 2] = v_b
X[:, 3] = p_b
y = ground_truth(X)[variables.dependent_variables[0].name]
colors = mcolors.TABLEAU_COLORS
col_keys = list(colors.keys())
plt.plot(
p_a, y, label=f"$V(A) = {v_a}$ (Original)", c=colors[col_keys[idx]]
)
if model is not None:
y = model.predict(X)
plt.plot(
p_a,
y,
label=f"$V(A) = {v_a}$ (Recovered)",
c=colors[col_keys[idx]],
linestyle="--",
)
x_limit = [0, variables.independent_variables[1].value_range[1]]
y_limit = [0, 1]
x_label = "Probability of Choosing Option A"
y_label = "Probability of Obtaining V(A)"
plt.xlim(x_limit)
plt.ylim(y_limit)
plt.xlabel(x_label, fontsize="large")
plt.ylabel(y_label, fontsize="large")
plt.legend(loc=2, fontsize="medium")
plt.title(name, fontsize="x-large")
collection = SyntheticExperimentCollection(
name=name,
description=prospect_theory.__doc__,
params=params,
variables=variables,
domain=domain,
run=run,
ground_truth=ground_truth,
plotter=plotter,
factory_function=prospect_theory,
)
return collection
|