autora.experimentalist.novelty
Novelty Experimentalist
sample(conditions, reference_conditions, num_samples=None, metric='euclidean', integration='min')
This novelty experimentalist re-arranges the pool of experimental conditions according to their dissimilarity with respect to a reference pool. The default dissimilarity is calculated as the average of the pairwise distances between the conditions in the pool and the reference conditions. If no number of samples are specified, all samples will be ordered and returned from the pool.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
conditions |
Union[DataFrame, ndarray]
|
pool of experimental conditions to evaluate dissimilarity |
required |
reference_conditions |
Union[DataFrame, ndarray]
|
reference pool of experimental conditions |
required |
num_samples |
Optional[int]
|
number of samples to select from the pool of experimental conditions |
None
|
metric |
str
|
dissimilarity measure. Options: 'euclidean', 'manhattan', 'chebyshev', 'minkowski', 'wminkowski', 'seuclidean', 'mahalanobis', 'haversine', 'hamming', 'canberra', 'braycurtis', 'matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath', 'yule'. See sklearn.metrics.DistanceMetric for more details. |
'euclidean'
|
Returns:
Type | Description |
---|---|
Sampled pool of conditions |
Source code in temp_dir/novelty/src/autora/experimentalist/novelty/__init__.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
|
score_sample(conditions, reference_conditions, num_samples=None, metric='euclidean', integration='sum')
This dissimilarity samples re-arranges the pool of experimental conditions according to their dissimilarity with respect to a reference pool. The default dissimilarity is calculated as the average of the pairwise distances between the conditions in the pool and the reference conditions. If no number of samples are specified, all samples will be ordered and returned from the pool.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
conditions |
Union[DataFrame, ndarray]
|
pool of experimental conditions to evaluate dissimilarity |
required |
reference_conditions |
Union[DataFrame, ndarray]
|
reference pool of experimental conditions |
required |
num_samples |
Optional[int]
|
number of samples to select from the pool of experimental conditions |
None
|
metric |
str
|
dissimilarity measure. Options: 'euclidean', 'manhattan', 'chebyshev', 'minkowski', 'wminkowski', 'seuclidean', 'mahalanobis', 'haversine', 'hamming', 'canberra', 'braycurtis', 'matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath', 'yule'. See sklearn.metrics.DistanceMetric for more details. |
'euclidean'
|
integration |
str
|
Distance integration method used to compute the overall dissimilarity score |
'sum'
|
for |
a given data point. Options
|
'sum', 'prod', 'mean', 'min', 'max'. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
Sampled pool of conditions and dissimilarity scores |
Source code in temp_dir/novelty/src/autora/experimentalist/novelty/__init__.py
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
|