Skip to content

autora.experiment_runner.synthetic.psychology.exp_learning

exp_learning(name='Exponential Learning', resolution=100, minimum_trial=1, minimum_initial_value=0, maximum_initial_value=0.5, lr=0.03, p_asymptotic=1.0)

Exponential Learning

Parameters:

Name Type Description Default
p_asymptotic

additive bias on constant multiplier

1.0
lr

learning rate

0.03
maximum_initial_value

upper bound for initial p value

0.5
minimum_initial_value

lower bound for initial p value

0
minimum_trial

upper bound for exponential constant

1
name

name of the experiment

'Exponential Learning'
resolution

number of allowed values for stimulus

100
Examples
required
Source code in autora/experiment_runner/synthetic/psychology/exp_learning.py
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
def exp_learning(
    name="Exponential Learning",
    resolution=100,
    minimum_trial=1,
    minimum_initial_value=0,
    maximum_initial_value=0.5,
    lr=0.03,
    p_asymptotic=1.0,
):
    """
    Exponential Learning

    Args:
        p_asymptotic: additive bias on constant multiplier
        lr: learning rate
        maximum_initial_value: upper bound for initial p value
        minimum_initial_value: lower bound for initial p value
        minimum_trial: upper bound for exponential constant
        name: name of the experiment
        resolution: number of allowed values for stimulus
        Examples:
        >>> s = exp_learning()
        >>> s.run(np.array([[.2,.1]]), random_state=42)
           P_asymptotic  trial  performance
        0           0.2    0.1     0.205444
    """

    maximum_trial = resolution

    params = dict(
        name="Exponential Learning",
        resolution=resolution,
        minimum_trial=minimum_trial,
        maximum_trial=maximum_trial,
        minimum_initial_value=minimum_initial_value,
        maximum_initial_value=maximum_initial_value,
        lr=lr,
        p_asymptotic=p_asymptotic,
    )

    p_initial = IV(
        name="P_asymptotic",
        allowed_values=np.linspace(
            minimum_initial_value, maximum_initial_value, resolution
        ),
        value_range=(minimum_initial_value, maximum_initial_value),
        units="performance",
        variable_label="Asymptotic Performance",
        type=ValueType.REAL,
    )

    trial = IV(
        name="trial",
        allowed_values=np.linspace(minimum_trial, maximum_trial, resolution),
        value_range=(minimum_trial, maximum_trial),
        units="trials",
        variable_label="Trials",
        type=ValueType.REAL,
    )

    performance = DV(
        name="performance",
        value_range=(0, p_asymptotic),
        units="performance",
        variable_label="Performance",
        type=ValueType.REAL,
    )

    variables = VariableCollection(
        independent_variables=[p_initial, trial],
        dependent_variables=[performance],
    )

    def run(
        conditions: Union[pd.DataFrame, np.ndarray, np.recarray],
        added_noise: float = 0.01,
        random_state: Optional[int] = None,
    ):
        rng = np.random.default_rng(random_state)
        X = np.array(conditions)
        Y = np.zeros((X.shape[0], 1))

        # exp learning function according to
        # Heathcote, A., Brown, S., & Mewhort, D. J. (2000). The power law repealed:
        # The case for an exponential law of practice. Psychonomic bulletin & review, 7(2), 185–207.

        # Thurstone, L. L. (1919). The learning curve equation.
        # Psy- chological Monographs, 26(3), i.

        for idx, x in enumerate(X):
            p_initial_exp = x[0]
            trial_exp = x[1]
            y = (
                p_asymptotic
                - (p_asymptotic - p_initial_exp) * np.exp(-lr * trial_exp)
                + rng.normal(0, added_noise)
            )
            Y[idx] = y

        experiment_data = pd.DataFrame(conditions)
        experiment_data.columns = [v.name for v in variables.independent_variables]
        experiment_data[variables.dependent_variables[0].name] = Y
        return experiment_data

    ground_truth = partial(run, added_noise=0.0)

    def domain():
        p_initial_values = variables.independent_variables[0].allowed_values
        trial_values = variables.independent_variables[1].allowed_values

        X = np.array(np.meshgrid(p_initial_values, trial_values)).T.reshape(-1, 2)
        return X

    def plotter(
        model=None,
    ):
        import matplotlib.pyplot as plt

        P_0_list = [0, 0.25, 0.5]

        for P_0 in P_0_list:
            X = np.zeros((len(trial.allowed_values), 2))
            X[:, 0] = P_0
            X[:, 1] = trial.allowed_values

            dvs = [dv.name for dv in variables.dependent_variables]
            y = ground_truth(X)[dvs]

            plt.plot(trial.allowed_values, y, label=f"$P_0 = {P_0}$ (Original)")
            if model is not None:
                y = model.predict(X)
                plt.plot(trial.allowed_values, y, label=f"$P_0 = {P_0}$ (Recovered)", linestyle="--")

        x_limit = [0, variables.independent_variables[1].value_range[1]]
        y_limit = [0, 1]
        x_label = "Trial $t$"
        y_label = "Performance $P_n$"

        plt.xlim(x_limit)
        plt.ylim(y_limit)
        plt.xlabel(x_label, fontsize="large")
        plt.ylabel(y_label, fontsize="large")
        plt.legend(loc=4, fontsize="medium")
        plt.title("Exponential Learning", fontsize="x-large")
        plt.show()

    collection = SyntheticExperimentCollection(
        name=name,
        description=exp_learning.__doc__,
        variables=variables,
        run=run,
        ground_truth=ground_truth,
        domain=domain,
        plotter=plotter,
        params=params,
        factory_function=exp_learning,
    )
    return collection