autora.theorist.bms.regressor
BMSRegressor
Bases: BaseEstimator
, RegressorMixin
Bayesian Machine Scientist.
BMS finds an optimal function to explain a dataset, given a set of variables, and a pre-defined number of parameters
This class is intended to be compatible with the Scikit-Learn Estimator API.
Examples:
>>> from autora.theorist.bms import Parallel
>>> import numpy as np
>>> num_samples = 1000
>>> X = np.linspace(start=0, stop=1, num=num_samples).reshape(-1, 1)
>>> y = 15. * np.ones(num_samples)
>>> estimator = BMSRegressor()
>>> estimator = estimator.fit(X, y)
>>> estimator.predict([[15.]])
array([[15.]])
Attributes:
Name | Type | Description |
---|---|---|
pms |
Parallel
|
the bayesian (parallel) machine scientist model |
model_ |
Tree
|
represents the best-fit model |
loss_ |
float
|
represents loss associated with best-fit model |
cache_ |
List
|
record of loss_ over model fitting epochs |
temp_ |
float
|
temperature of model_ |
Source code in temp_dir/bms/src/autora/theorist/bms/regressor.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
|
__init__(prior_par=PRIORS, ts=TEMPERATURES, epochs=1500)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prior_par |
dict
|
a dictionary of the prior probabilities of different functions based on wikipedia data scraping |
PRIORS
|
ts |
List[float]
|
contains a list of the temperatures that the parallel ms works at |
TEMPERATURES
|
Source code in temp_dir/bms/src/autora/theorist/bms/regressor.py
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
|
fit(X, y, num_param=1, root=None, custom_ops=None, random_state=None)
Runs the optimization for a given set of X
s and y
s.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray
|
independent variables in an n-dimensional array |
required |
y |
ndarray
|
dependent variables in an n-dimensional array |
required |
num_param |
int
|
number of parameters |
1
|
root |
fixed root of the tree |
None
|
|
custom_ops |
user-defined functions to additionally treated as primitives |
None
|
Returns:
Name | Type | Description |
---|---|---|
self |
BMS
|
the fitted estimator |
Source code in temp_dir/bms/src/autora/theorist/bms/regressor.py
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
|
predict(X)
Applies the fitted model to a set of independent variables X
,
to give predictions for the dependent variable y
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray
|
independent variables in an n-dimensional array |
required |
Returns:
Name | Type | Description |
---|---|---|
y |
ndarray
|
predicted dependent variable values |
Source code in temp_dir/bms/src/autora/theorist/bms/regressor.py
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
|
present_results()
Prints out the best equation, its description length, along with a plot of how this has progressed over the course of the search tasks.
Source code in temp_dir/bms/src/autora/theorist/bms/regressor.py
167 168 169 170 171 172 173 174 175 176 177 |
|