Skip to content

autora.experiment_runner.synthetic.economics.expected_value_theory

expected_value_theory(name='Expected Value Theory', choice_temperature=0.1, value_lambda=0.5, resolution=10, minimum_value=-1, maximum_value=1)

Expected Value Theory

Parameters:

Name Type Description Default
name
'Expected Value Theory'
choice_temperature float
0.1
value_lambda float
0.5
resolution
10
minimum_value
-1
maximum_value
1
Examples

s = expected_value_theory() s.run(np.array([[1,2,.1,.9]]), random_state=42) V_A P_A V_B P_B choose_A 0 1.0 2.0 0.1 0.9 0.999938

required
Source code in autora/experiment_runner/synthetic/economics/expected_value_theory.py
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
def expected_value_theory(
    name="Expected Value Theory",
    choice_temperature: float = 0.1,
    value_lambda: float = 0.5,
    resolution=10,
    minimum_value=-1,
    maximum_value=1,
):
    """
    Expected Value Theory

    Parameters:
        name:
        choice_temperature:
        value_lambda:
        resolution:
        minimum_value:
        maximum_value:
        Examples:
            >>> s = expected_value_theory()
            >>> s.run(np.array([[1,2,.1,.9]]), random_state=42)
               V_A  P_A  V_B  P_B  choose_A
            0  1.0  2.0  0.1  0.9  0.999938
    """

    params = dict(
        name=name,
        minimum_value=minimum_value,
        maximum_value=maximum_value,
        resolution=resolution,
        choice_temperature=choice_temperature,
        value_lambda=value_lambda,
    )

    variables = get_variables(
        minimum_value=minimum_value, maximum_value=maximum_value, resolution=resolution
    )

    def run(
        conditions: Union[pd.DataFrame, np.ndarray, np.recarray],
        added_noise: float = 0.01,
        random_state: Optional[int] = None,
    ):
        rng = np.random.default_rng(random_state)
        X = np.array(conditions)
        Y = np.zeros((X.shape[0], 1))
        for idx, x in enumerate(X):
            value_A = value_lambda * x[0]
            value_B = value_lambda * x[2]

            probability_a = x[1]
            probability_b = x[3]

            expected_value_A = value_A * probability_a + rng.normal(0, added_noise)
            expected_value_B = value_B * probability_b + rng.normal(0, added_noise)

            # compute probability of choosing option A
            p_choose_A = np.exp(expected_value_A / choice_temperature) / (
                np.exp(expected_value_A / choice_temperature)
                + np.exp(expected_value_B / choice_temperature)
            )

            Y[idx] = p_choose_A

        experiment_data = pd.DataFrame(conditions)
        experiment_data.columns = [v.name for v in variables.independent_variables]
        experiment_data[variables.dependent_variables[0].name] = Y
        return experiment_data

    ground_truth = partial(run, added_noise=0.0)

    def domain():
        X = np.array(
            np.meshgrid([x.allowed_values for x in variables.independent_variables])
        ).T.reshape(-1, 4)
        return X

    def plotter(model=None):
        import matplotlib.colors as mcolors
        import matplotlib.pyplot as plt

        v_a_list = [-1, 0.5, 1]
        v_b = 0.5
        p_b = 0.5
        p_a = np.linspace(0, 1, 100)

        for idx, v_a in enumerate(v_a_list):
            X = np.zeros((len(p_a), 4))
            X[:, 0] = v_a
            X[:, 1] = p_a
            X[:, 2] = v_b
            X[:, 3] = p_b

            y = ground_truth(X)[variables.dependent_variables[0].name]
            colors = mcolors.TABLEAU_COLORS
            col_keys = list(colors.keys())
            plt.plot(
                p_a, y, label=f"$V(A) = {v_a}$ (Original)", c=colors[col_keys[idx]]
            )
            if model is not None:
                y = model.predict(X)
                plt.plot(
                    p_a,
                    y,
                    label=f"$V(A) = {v_a}$ (Recovered)",
                    c=colors[col_keys[idx]],
                    linestyle="--",
                )

        x_limit = [0, variables.independent_variables[1].value_range[1]]
        y_limit = [0, 1]
        x_label = "Probability of Choosing Option A"
        y_label = "Probability of Obtaining V(A)"

        plt.xlim(x_limit)
        plt.ylim(y_limit)
        plt.xlabel(x_label, fontsize="large")
        plt.ylabel(y_label, fontsize="large")
        plt.legend(loc=2, fontsize="medium")
        plt.title(name, fontsize="x-large")

    collection = SyntheticExperimentCollection(
        name=name,
        description=expected_value_theory.__doc__,
        variables=variables,
        run=run,
        ground_truth=ground_truth,
        domain=domain,
        plotter=plotter,
        params=params,
        factory_function=expected_value_theory,
    )
    return collection