Skip to content

autora.experiment_runner.synthetic.neuroscience.task_switching

task_switching(name='Task Switching', resolution=50, priming_default=0.3, temperature=0.2, minimum_task_control=0.15, constant=1.5)

Task Switchng

Parameters:

Name Type Description Default
name

name of the experiment

'Task Switching'
resolution

number of allowed values for stimulus

50
priming_default

default for task priming

0.3
temperature

temperature for softmax when computing performance of current task

0.2
constant

constant for task activation

1.5
minimum_task_control

minimum task control

0.15
Source code in autora/experiment_runner/synthetic/neuroscience/task_switching.py
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
def task_switching(
    name="Task Switching",
    resolution=50,
    priming_default=0.3,
    temperature=0.2,
    minimum_task_control=0.15,
    constant=1.5,
):
    """
    Task Switchng

    Args:
        name: name of the experiment
        resolution: number of allowed values for stimulus
        priming_default: default for task priming
        temperature: temperature for softmax when computing performance of current task
        constant: constant for task activation
        minimum_task_control: minimum task control
    """

    params = dict(
        name=name,
        resolution=resolution,
        priming_default=priming_default,
        temperature=temperature,
        minimum_task_control=minimum_task_control,
        constant=constant,
    )

    current_task_strength = IV(
        name="cur_task_strength",
        allowed_values=np.linspace(1 / resolution, 1, resolution),  #
        value_range=(0, 1),
        units="intensity",
        variable_label="Strength of Current Task",
        type=ValueType.REAL,
    )

    alt_task_strength = IV(
        name="alt_task_strength",
        allowed_values=np.linspace(1 / resolution, 1, resolution),
        value_range=(0, 1),
        units="intensity",
        variable_label="Strength of Alternative Task",
        type=ValueType.REAL,
    )

    is_switch = IV(
        name="is_switch",
        allowed_values=[0, 1],
        value_range=(0, 1),
        units="indicator",
        variable_label="Is Switch",
        type=ValueType.PROBABILITY_SAMPLE,
    )

    cur_task_performance = DV(
        name="cur_task_performance",
        value_range=(0, 1),
        units="performance",
        variable_label="Accuray of Current Task",
        type=ValueType.PROBABILITY,
    )

    variables = VariableCollection(
        independent_variables=[current_task_strength, alt_task_strength, is_switch],
        dependent_variables=[cur_task_performance],
    )

    def inverse(x, A, B):
        y = 1 / (A * x + B)
        return y

    def run(
        conditions: Union[pd.DataFrame, np.ndarray, np.recarray],
        added_noise: float = 0.01,
        random_state: Optional[int] = None,
    ):
        rng = np.random.default_rng(random_state)
        X = np.array(conditions)
        Y = np.zeros((X.shape[0], 1))
        for idx, x in enumerate(X):
            cur_task_strength = x[0]
            alt_task_strength = x[1]
            is_switch = x[2]

            # determine current task control

            input_ratio = (cur_task_strength + priming_default * (1 - is_switch)) / (
                alt_task_strength + priming_default * (is_switch)
            )

            cur_task_control = inverse(input_ratio, 2.61541389, 0.7042097)
            cur_task_control = np.max([cur_task_control, minimum_task_control])

            cur_task_input = (
                cur_task_strength
                + priming_default * (1 - is_switch)
                + cur_task_control
                + rng.random.normal(0, added_noise)
            )

            alt_task_input = (
                alt_task_strength
                + priming_default * (is_switch)
                + rng.random.normal(0, added_noise)
            )

            cur_task_activation = 1 - np.exp(-constant * cur_task_input)
            alt_task_activation = 1 - np.exp(-constant * alt_task_input)

            cur_task_performance = np.exp(cur_task_activation * 1 / temperature) / (
                np.exp(cur_task_activation * 1 / temperature)
                + np.exp(alt_task_activation * 1 / temperature)
            )

            Y[idx] = cur_task_performance

        return Y

    ground_truth = partial(run, added_noise=0.0)

    def domain():
        s1_values = variables.independent_variables[0].allowed_values
        s2_values = variables.independent_variables[1].allowed_values
        X = np.array(np.meshgrid(s1_values, s2_values)).T.reshape(-1, 2)
        # remove all combinations where s1 > s2
        X = X[X[:, 0] <= X[:, 1]]
        return X

    def plotter(
        model=None,
    ):
        X = np.zeros((4, 3))

        # Values taken from Table 4 in Yeung & Monsell (2003)

        # word switch
        X[0, 0] = 0.5  # current task strength
        X[0, 1] = 0.1  # alternative task strength
        # X[0, 2] = 0.2 # current task control
        X[0, 2] = 1  # is switch

        # word repetition
        X[1, 0] = 0.5  # current task strength
        X[1, 1] = 0.1  # alternative task strength
        # X[1, 2] = 0.15 # current task control
        X[1, 2] = 0  # is switch

        # color switch
        X[2, 0] = 0.1  # current task strength
        X[2, 1] = 0.5  # alternative task strength
        # X[2, 2] = 0.97  # current task control
        X[2, 2] = 1  # is switch

        # color repetition
        X[3, 0] = 0.1  # current task strength
        X[3, 1] = 0.5  # alternative task strength
        # X[3, 2] = 0.38  # current task control
        X[3, 2] = 0  # is switch

        y = ground_truth(X, priming_constant=0.3, std=0)

        word_switch_performance = y[0, 0]
        word_repetition_performance = y[1, 0]
        color_switch_performance = y[2, 0]
        color_repetition_performance = y[3, 0]

        x_data = [1, 2]
        word_performance = (
            1 - np.array([word_repetition_performance, word_switch_performance])
        ) * 100
        color_performance = (
            1 - np.array([color_repetition_performance, color_switch_performance])
        ) * 100

        if model is not None:
            y_pred = model.predict(X)
            word_switch_performance_pred = y_pred[0][0]
            word_repetition_performance_pred = y_pred[1][0]
            color_switch_performance_pred = y_pred[2][0]
            color_repetition_performance_pred = y_pred[3][0]
            word_performance_recovered = (
                1
                - np.array(
                    [word_repetition_performance_pred, word_switch_performance_pred]
                )
            ) * 100
            color_performance_recovered = (
                1
                - np.array(
                    [color_repetition_performance_pred, color_switch_performance_pred]
                )
            ) * 100

        legend = (
            "Word Task (Original)",
            "Color Task (Original)",
            "Word Task (Recovered)",
            "Color Task (Recovered)",
        )

        # plot
        import matplotlib.colors as mcolors
        import matplotlib.pyplot as plt

        colors = mcolors.TABLEAU_COLORS
        col_keys = list(colors.keys())

        plt.plot(x_data, word_performance, label=legend[0], c=colors[col_keys[0]])
        plt.plot(x_data, color_performance, label=legend[1], c=colors[col_keys[1]])
        if model is not None:
            plt.plot(
                x_data,
                word_performance_recovered,
                "--",
                label=legend[2],
                c=colors[col_keys[0]],
            )
            plt.plot(
                x_data,
                color_performance_recovered,
                "--",
                label=legend[3],
                c=colors[col_keys[1]],
            )
        plt.xlim([0.5, 2.5])
        plt.ylim([0, 50])
        plt.ylabel("Error Rate (%)", fontsize="large")
        plt.legend(loc=2, fontsize="large")
        plt.title("Task Switching", fontsize="large")
        plt.xticks(x_data, ["Repetition", "Switch"], rotation="horizontal")
        plt.show()

    collection = SyntheticExperimentCollection(
        name=name,
        description=task_switching.__doc__,
        variables=variables,
        run=run,
        ground_truth=ground_truth,
        domain=domain,
        plotter=plotter,
        params=params,
        factory_function=task_switching,
    )
    return collection