Skip to content

autora.experiment_runner.synthetic.abstract.lmm

A synthetic experiment that runs a linear mixed model.

Examples:

>>> from autora.experiment_runner.synthetic.abstract.lmm import (
...     lmm_experiment
... )
>>> formula = 'rt ~ 1'
>>> fixed_effects = {'Intercept': 1.5}
>>> experiment = lmm_experiment(formula=formula,fixed_effects=fixed_effects)
>>> conditions = pd.DataFrame({
...     'x1':np.linspace(0, 1, 5)
... })
>>> experiment.ground_truth(conditions=conditions)
     x1   rt
0  0.00  1.5
1  0.25  1.5
2  0.50  1.5
3  0.75  1.5
4  1.00  1.5
>>> formula = 'rt ~ 1 + x1'
>>> fixed_effects = {'Intercept': 1., 'x1': 2.}
>>> experiment = lmm_experiment(formula=formula,fixed_effects=fixed_effects)
>>> experiment.ground_truth(conditions=conditions)
     x1   rt
0  0.00  1.0
1  0.25  1.5
2  0.50  2.0
3  0.75  2.5
4  1.00  3.0
>>> formula_1 = 'rt ~ 1 + x1'
>>> fixed_effects_1 = {'Intercept': 0., 'x1': 2.}
>>> experiment_1 = lmm_experiment(formula=formula_1,fixed_effects=fixed_effects_1)
>>> formula_2 = 'rt ~ x1'
>>> fixed_effects_2 = {'x1': 2.}
>>> experiment_2 = lmm_experiment(formula=formula_2,fixed_effects=fixed_effects_2)
>>> experiment_1.ground_truth(conditions=conditions) ==experiment_2.ground_truth(conditions=conditions)
     x1    rt
0  True  True
1  True  True
2  True  True
3  True  True
4  True  True
>>> formula = 'rt ~ 1 + (1|subject) + x1'
>>> fixed_effects = {'Intercept': 1, 'x1': 2}
>>> random_effects = {'subject': {'Intercept': .1}}
>>> experiment = lmm_experiment(formula=formula,
...                             fixed_effects=fixed_effects,
...                             random_effects=random_effects)
>>> conditions_1 = pd.DataFrame({
...     'x1':np.linspace(0, 1, 3),
...     'subject': np.repeat(1, 3)
... })
>>> conditions_2 = pd.DataFrame({
...     'x1':np.linspace(0, 1, 3),
...     'subject': np.repeat(2, 3)
... })
>>> conditions = pd.concat([conditions_1, conditions_2])
>>> conditions
    x1  subject
0  0.0        1
1  0.5        1
2  1.0        1
0  0.0        2
1  0.5        2
2  1.0        2
>>> experiment.ground_truth(conditions=conditions,random_state=42)
    x1  subject        rt
0  0.0        1  1.030472
1  0.5        1  2.030472
2  1.0        1  3.030472
0  0.0        2  0.896002
1  0.5        2  1.896002
2  1.0        2  2.896002
>>> formula = 'rt ~ (x1|subject)'
>>> random_effects = {'subject': {'x1': .1}}
>>> experiment = lmm_experiment(formula=formula,random_effects=random_effects)
>>> experiment.ground_truth(conditions=conditions,random_state=42)
    x1  subject        rt
0  0.0        1  0.000000
1  0.5        1  0.015236
2  1.0        1  0.030472
0  0.0        2  0.000000
1  0.5        2 -0.051999
2  1.0        2 -0.103998
>>> formula = 'rt ~ (x1|subject) + x1'
>>> fixed_effects = {'x1': 1.}
>>> random_effects = {'subject': {'x1': .01}}
>>> experiment = lmm_experiment(formula=formula,
...                             fixed_effects=fixed_effects,
...                             random_effects=random_effects)
>>> experiment.ground_truth(conditions=conditions,random_state=42)
    x1  subject        rt
0  0.0        1  0.000000
1  0.5        1  0.501524
2  1.0        1  1.003047
0  0.0        2  0.000000
1  0.5        2  0.494800
2  1.0        2  0.989600
>>> formula = 'y ~ x1 + x2 + (1 + x1|subject) + (x2|group)'
>>> fixed_effects = {'Intercept': 1.5, 'x1': 2.0, 'x2': -1.2}
>>> random_effects = {
...        'subject': {'1': 0.5, 'x1': 0.3},
...        'group': {'x2': 0.4}
...    }
>>> experiment = lmm_experiment(formula=formula,
...                             fixed_effects=fixed_effects,
...                             random_effects=random_effects)
>>> n_samples = 10
>>> rng = np.random.default_rng(0)
>>> conditions = pd.DataFrame({
...        'x1': rng.normal(0, 1, n_samples),
...        'x2': rng.normal(0, 1, n_samples),
...        'subject': rng.choice(['A', 'B', 'C', 'D'], n_samples),
...        'group': rng.choice(['E', 'F', 'G', 'H'], n_samples)
...    })
>>> experiment.ground_truth(conditions=conditions, random_state=42)
         x1        x2 subject group         y
0  0.125730 -0.623274       B     H  2.502995
1 -0.132105  0.041326       A     F  1.258294
2  0.640423 -2.325031       A     F  5.490146
3  0.104900 -0.218792       A     H  1.899763
4 -0.535669 -1.245911       A     H  2.173576
5  0.361595 -0.732267       C     H  2.923207
6  1.304000 -0.544259       C     F  4.320545
7  0.947081 -0.316300       C     G  3.405867
8 -0.703735  0.411631       B     H -0.578950
9 -1.265421  1.042513       C     G -1.794523
>>> experiment.run(conditions=conditions, added_noise=.1, random_state=42)
         x1        x2 subject group         y
0  0.125730 -0.623274       B     H  2.417691
1 -0.132105  0.041326       A     F  1.346234
2  0.640423 -2.325031       A     F  5.567925
3  0.104900 -0.218792       A     H  1.906366
4 -0.535669 -1.245911       A     H  2.286300
5  0.361595 -0.732267       C     H  2.969958
6  1.304000 -0.544259       C     F  4.234616
7  0.947081 -0.316300       C     G  3.442742
8 -0.703735  0.411631       B     H -0.674839
9 -1.265421  1.042513       C     G -1.706678

lmm_experiment(formula, fixed_effects=None, random_effects=None, X=None, random_state=None, name='Linear Mixed Model Experiment')

A linear mixed model synthetic experiments.

Parameters:

Name Type Description Default
name str

name of the experiment

'Linear Mixed Model Experiment'
formula str

formula of the linear mixed model (similar to lmer package in R)

required
fixed_effects Optional[dict]

dictionary describing the fixed effects (Intercept and slopes)

None
random_effects Optional[dict]

nested dictionary describing the random effects of slopes and intercept. These are standard deviasions in a normal distribution with a mean of zero.

None
X Optional[Sequence[IV]]

Independent variable descriptions. Used to add allowed values

None
Source code in autora/experiment_runner/synthetic/abstract/lmm.py
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
def lmm_experiment(
    # Add any configurable parameters with their defaults here:
    formula: str,
    fixed_effects: Optional[dict] = None,
    random_effects: Optional[dict] = None,
    X: Optional[Sequence[IV]] = None,
    random_state: Optional[int] = None,
    name: str = "Linear Mixed Model Experiment",
):
    """
    A linear mixed model synthetic experiments.

    Parameters:
        name: name of the experiment
        formula: formula of the linear mixed model (similar to lmer package in R)
        fixed_effects: dictionary describing the fixed effects (Intercept and slopes)
        random_effects: nested dictionary describing the random effects of slopes and intercept.
            These are standard deviasions in a normal distribution with a mean of zero.
        X: Independent variable descriptions. Used to add allowed values
    """

    if not fixed_effects:
        fixed_effects = {}
    if not random_effects:
        random_effects = {}

    params = dict(
        # Include all parameters here:
        name=name,
        formula=formula,
        fixed_effects=fixed_effects,
        random_effects=random_effects,
    )

    dependent, fixed_variables, random_variables = _extract_variable_names(formula)

    dependent = DV(name=dependent)
    if not X:
        independent = [IV(name=iv) for iv in fixed_variables + random_variables]
    else:
        if set([x.name for x in X]) != set(fixed_variables + random_variables):
            raise Exception(
                "Variable names in formula don't match given variable names"
            )
        independent = X

    variables = VariableCollection(
        independent_variables=independent,
        dependent_variables=[dependent],
    )

    rng = np.random.default_rng(random_state)

    # Define experiment runner
    def run(
        conditions: pd.DataFrame,
        added_noise=0.01,
        random_state=None,
    ):
        """A function which simulates noisy observations."""
        if random_state is not None:
            rng_ = np.random.default_rng(random_state)
        else:
            rng_ = rng  # use the RNG from the outer scope

        dependent_var, rhs = formula.split("~")
        dependent_var = dependent_var.strip()
        fixed_vars = fixed_variables

        # Check for the presence of an intercept in the formula
        has_intercept = (
            True if "1" in fixed_effects or re.search(r"\b0\b", rhs) is None else False
        )

        if not isinstance(conditions, pd.DataFrame):
            _conditions = np.array(conditions)
            _conditions = pd.DataFrame(_conditions)
            _conditions.columns = [iv.name for iv in variables.independent_variables]
        else:
            _conditions = conditions
        experiment_data = _conditions.copy()

        # Initialize the dependent variable
        experiment_data[dependent_var] = (
            fixed_effects.get("Intercept", 0) if has_intercept else 0
        )

        # Add fixed effects
        for var in fixed_vars:
            if var in experiment_data.columns:
                experiment_data[dependent_var] += (
                    fixed_effects.get(var, 0) * experiment_data[var]
                )

        # Process each random effect term
        random_effect_terms = re.findall(r"\((.+?)\|(.+?)\)", formula)
        for term in random_effect_terms:
            random_effects_, group_var = term
            group_var = group_var.strip()

            # Ensure the group_var is in the data
            if group_var not in experiment_data.columns:
                raise ValueError(f"Group variable '{group_var}' not found in the data")

            # Process each part of the random effect (intercept and slopes)
            for part in random_effects_.split("+"):
                part = "Intercept" if part == "1" else part
                part = part.strip()
                std_dev = random_effects[group_var].get(part, 0.5)
                random_effect_values = {
                    group: rng_.normal(0, std_dev)
                    for group in experiment_data[group_var].unique()
                }
                if part == "Intercept":  # Random intercept
                    if has_intercept:
                        experiment_data[dependent_var] += experiment_data[
                            group_var
                        ].map(random_effect_values)
                else:  # Random slopes
                    if part in experiment_data.columns:
                        experiment_data[dependent_var] += (
                            experiment_data[group_var].map(random_effect_values)
                            * experiment_data[part]
                        )

        # Add noise
        experiment_data[dependent_var] += rng_.normal(
            0, added_noise, len(experiment_data)
        )

        return experiment_data

    ground_truth = partial(run, added_noise=0.0)
    """A function which simulates perfect observations.
    This still uses random values for random effects."""

    def domain():
        """A function which returns all possible independent variable values as a 2D array."""
        x = variables.independent_variables[0].allowed_values.reshape(-1, 1)
        return x

    def plotter(model=None):
        """A function which plots the ground truth and (optionally) a fitted model."""
        import matplotlib.pyplot as plt

        plt.figure()
        dom = domain()
        data = ground_truth(dom)

        y = data[dependent.name]
        x = data.drop(dependent.name, axis=1)

        if x.shape[1] > 2:
            Exception(
                "No standard way to plot more then 2 independent variables implemented"
            )

        if x.shape[1] == 1:
            plt.plot(x, y, label="Ground Truth")
            if model is not None:
                plt.plot(x, model.predict(x), label="Fitted Model")
        else:
            fig = plt.figure()
            ax = fig.add_subplot(projection="3d")
            x_ = x.iloc[:, 0]

            y_ = x.iloc[:, 1]
            z_ = y

            ax.scatter(x_, y_, z_, s=1, alpha=0.3, label="Ground Truth")
            if model is not None:
                z_m = model.predict(x)
                ax.scatter(x_, y_, z_m, s=1, alpha=0.5, label="Fitted Model")

        plt.legend()
        plt.title(name)
        plt.show()

    # The object which gets stored in the synthetic inventory
    collection = SyntheticExperimentCollection(
        name=name,
        description=lmm_experiment.__doc__,
        variables=variables,
        run=run,
        ground_truth=ground_truth,
        domain=domain,
        plotter=plotter,
        params=params,
        factory_function=lmm_experiment,
    )
    return collection