Skip to content

autora.experiment_runner.synthetic.psychophysics.weber_fechner_law

weber_fechner_law(name='Weber-Fechner Law', resolution=100, constant=1.0, maximum_stimulus_intensity=5.0)

Weber-Fechner Law

Parameters:

Name Type Description Default
name

name of the experiment

'Weber-Fechner Law'
resolution

number of allowed values for stimulus 1 and 2

100
constant

constant multiplier

1.0
maximum_stimulus_intensity

maximum value for stimulus 1 and 2

5.0

Examples:

>>> experiment = weber_fechner_law()

The runner can accept numpy arrays or pandas DataFrames, but the return value will

always be a pandas DataFrame.

>>> experiment.run(np.array([[.1,.2]]), random_state=42)
    S1   S2  difference_detected
0  0.1  0.2             0.696194
>>> experiment.run(pd.DataFrame({'S1': [0.1], 'S2': [0.2]}), random_state=42)
    S1   S2  difference_detected
0  0.1  0.2             0.696194
Source code in autora/experiment_runner/synthetic/psychophysics/weber_fechner_law.py
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
def weber_fechner_law(
    name="Weber-Fechner Law",
    resolution=100,
    constant=1.0,
    maximum_stimulus_intensity=5.0,
):
    """
    Weber-Fechner Law

    Args:
        name: name of the experiment
        resolution: number of allowed values for stimulus 1 and 2
        constant: constant multiplier
        maximum_stimulus_intensity: maximum value for stimulus 1 and 2

    Examples:
        >>> experiment = weber_fechner_law()

        # The runner can accept numpy arrays or pandas DataFrames, but the return value will
        # always be a pandas DataFrame.
        >>> experiment.run(np.array([[.1,.2]]), random_state=42)
            S1   S2  difference_detected
        0  0.1  0.2             0.696194

        >>> experiment.run(pd.DataFrame({'S1': [0.1], 'S2': [0.2]}), random_state=42)
            S1   S2  difference_detected
        0  0.1  0.2             0.696194

    """

    params = dict(
        name=name,
        resolution=resolution,
        constant=constant,
        maximum_stimulus_intensity=maximum_stimulus_intensity,
    )

    iv1 = IV(
        name="S1",
        allowed_values=np.linspace(
            1 / resolution, maximum_stimulus_intensity, resolution
        ),
        value_range=(1 / resolution, maximum_stimulus_intensity),
        units="intensity",
        variable_label="Stimulus 1 Intensity",
        type=ValueType.REAL,
    )

    iv2 = IV(
        name="S2",
        allowed_values=np.linspace(
            1 / resolution, maximum_stimulus_intensity, resolution
        ),
        value_range=(1 / resolution, maximum_stimulus_intensity),
        units="intensity",
        variable_label="Stimulus 2 Intensity",
        type=ValueType.REAL,
    )

    dv1 = DV(
        name="difference_detected",
        value_range=(0, maximum_stimulus_intensity),
        units="sensation",
        variable_label="Sensation",
        type=ValueType.REAL,
    )

    variables = VariableCollection(
        independent_variables=[iv1, iv2],
        dependent_variables=[dv1],
    )

    def run(
        conditions: Union[pd.DataFrame, np.ndarray, np.recarray],
        added_noise=0.01,
        random_state: Optional[int] = None,
    ):
        rng = np.random.default_rng(random_state)
        X = np.array(conditions)

        Y = np.zeros((X.shape[0], 1))
        for idx, x in enumerate(X):
            y = constant * np.log(x[1] / x[0]) + rng.normal(0, added_noise)
            Y[idx] = y

        experiment_data = pd.DataFrame(conditions)
        experiment_data.columns = [v.name for v in variables.independent_variables]
        experiment_data[dv1.name] = Y
        return experiment_data

    ground_truth = partial(run, added_noise=0.0)

    def domain():
        s1_values = variables.independent_variables[0].allowed_values
        s2_values = variables.independent_variables[1].allowed_values
        X = np.array(np.meshgrid(s1_values, s2_values)).T.reshape(-1, 2)
        # remove all combinations where s1 > s2
        X = X[X[:, 0] <= X[:, 1]]
        return X

    def plotter(
        model=None,
    ):
        import matplotlib.colors as mcolors
        import matplotlib.pyplot as plt

        colors = mcolors.TABLEAU_COLORS
        col_keys = list(colors.keys())

        S0_list = [1, 2, 4]
        delta_S = np.linspace(0, 5, 100)

        for idx, S0_value in enumerate(S0_list):
            S0 = S0_value + np.zeros(delta_S.shape)
            S1 = S0 + delta_S
            X = np.array([S0, S1]).T
            y = ground_truth(X)[dv1.name]
            plt.plot(
                delta_S,
                y,
                label=f"$S_0 = {S0_value}$ (Original)",
                c=colors[col_keys[idx]],
            )
            if model is not None:
                y = model.predict(X)
                plt.plot(
                    delta_S,
                    y,
                    label=f"$S_0 = {S0_value}$ (Recovered)",
                    c=colors[col_keys[idx]],
                    linestyle="--",
                )

        x_limit = [0, variables.independent_variables[0].value_range[1]]
        y_limit = [0, 2]
        x_label = r"Stimulus Intensity Difference $\Delta S = S_1 - S_0$"
        y_label = "Perceived Intensity of Stimulus $S_1$"

        plt.xlim(x_limit)
        plt.ylim(y_limit)
        plt.xlabel(x_label, fontsize="large")
        plt.ylabel(y_label, fontsize="large")
        plt.legend(loc=2, fontsize="medium")
        plt.title("Weber-Fechner Law", fontsize="x-large")

    collection = SyntheticExperimentCollection(
        name=name,
        description=weber_fechner_law.__doc__,
        variables=variables,
        run=run,
        ground_truth=ground_truth,
        domain=domain,
        plotter=plotter,
        params=params,
        factory_function=weber_fechner_law,
    )
    return collection